首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22431篇
  免费   2233篇
  国内免费   937篇
  2024年   33篇
  2023年   175篇
  2022年   449篇
  2021年   740篇
  2020年   484篇
  2019年   627篇
  2018年   647篇
  2017年   533篇
  2016年   894篇
  2015年   1337篇
  2014年   1472篇
  2013年   1621篇
  2012年   1969篇
  2011年   1714篇
  2010年   1127篇
  2009年   1052篇
  2008年   1231篇
  2007年   1173篇
  2006年   1079篇
  2005年   1047篇
  2004年   986篇
  2003年   957篇
  2002年   900篇
  2001年   231篇
  2000年   165篇
  1999年   233篇
  1998年   231篇
  1997年   182篇
  1996年   141篇
  1995年   156篇
  1994年   144篇
  1993年   137篇
  1992年   157篇
  1991年   124篇
  1990年   123篇
  1989年   108篇
  1988年   90篇
  1987年   81篇
  1986年   90篇
  1985年   92篇
  1984年   107篇
  1983年   63篇
  1982年   86篇
  1981年   64篇
  1980年   76篇
  1979年   49篇
  1977年   43篇
  1974年   34篇
  1972年   33篇
  1971年   31篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Product inhibition by cellobiose decreases the rate of enzymatic cellulose degradation. The optimal reaction conditions for two Emericella (Aspergillus) nidulans-derived cellobiohydrolases I and II produced in Pichia pastoris were identified as CBHI: 52 °C, pH 4.5–6.5, and CBHII: 46 °C, pH 4.8. The optimum in a mixture of the two was 50 °C, pH 4.9. An almost fourfold increase in enzymatic hydrolysis yield was achieved with intermittent product removal of cellobiose with membrane filtration (2 kDa cut-off): The conversion of cotton cellulose after 72 h was ~19 % by weight, whereas the conversion in the parallel batch reaction was only ~5 % by weight. Also, a synergistic effect, achieving ~27 % substrate conversion, was obtained by addition of endo-1,4-β-d-glucanase. The synergistic effect was only obtained with product removal. By using pure, monoactive enzymes, the work illustrates the profound gains achievable by intermittent product removal during cellulose hydrolysis.  相似文献   
992.
Using the National Longitudinal Survey of Freshmen (NLSF), we examine both between- and within-group differences in the odds of feeling intraracially harassed. Specifically, we investigate the effects of colleges’ and universities’ racial composition as well as the nature of students’ associations with non-group members, including involvement in racially homogeneous campus organizations, ethnoracial diversity of friendship networks, and interracial dating. Our findings suggest that although college racial composition appears to have little effect on experiencing intraracial harassment, the nature of students’ involvement with other-race students matters a great deal. For all groups, interracial dating increased odds of harassment. Among black and white students, more diverse friendship networks did as well. And among Asian and Latino students, involvement in any racially homogeneous campus organization was associated with increases in reports of intraracial harassment. Thus, we propose a baseline theoretical model of intraracial harassment that highlights the nature of students’ associations with outgroups.  相似文献   
993.
This paper reports an approach to enable rapid concentration and recovery of bacterial cells from aqueous chicken homogenates as a preanalytical step of detection. This approach includes biochemical pretreatment and prefiltration of food samples and development of an automated cell concentration instrument based on cross-flow microfiltration. A polysulfone hollow-fiber membrane module having a nominal pore size of 0.2 μm constitutes the core of the cell concentration instrument. The aqueous chicken homogenate samples were circulated within the cross-flow system achieving 500- to 1,000-fold concentration of inoculated Salmonella enterica serovar Enteritidis and naturally occurring microbiota with 70% recovery of viable cells as determined by plate counting and quantitative PCR (qPCR) within 35 to 45 min. These steps enabled 10 CFU/ml microorganisms in chicken homogenates or 102 CFU/g chicken to be quantified. Cleaning and sterilizing the instrument and membrane module by stepwise hydraulic and chemical cleaning (sodium hydroxide and ethanol) enabled reuse of the membrane 15 times before replacement. This approach begins to address the critical need for the food industry for detecting food pathogens within 6 h or less.  相似文献   
994.
In uranium-contaminated aquifers co-contaminated with nitrate, denitrifiers play a critical role in bioremediation. Six strains of denitrifying bacteria belonging to Rhizobium, Pseudomonas, and Castellaniella were isolated from the Oak Ridge Integrated Field Research Challenge Site (OR-IFRC), where biostimulation of acidic (pH 3.5–6.5), nitrate-contaminated (up to 140 mM) groundwater occurred. Three isolates were characterized in regards to nitrite tolerance, denitrification kinetic parameters, and growth on different denitrification intermediates. Kinetic and growth experiments showed that Pseudomonas str. GN33#1 reduced NO? 3 most rapidly (Vmax = 15.8 μmol e?·min?1·mg protein?1) and had the fastest generation time (gt) on NO? 3 (2.6 h). Castellaniella str. 4.5A2 was the most low pH and NO? 2 tolerant and grew rapidly on NO? 2 (gt = 4.0 h). Rhizobium str. GN32#2 was also tolerant of low pH values and reduced NO? 2 rapidly (Vmax = 10.6 μmol e?·min?1·mg protein?1) but was far less NO? 2 tolerant than Castellaniella str. 4.5A2. Growth of and denitrification by these three strains incubated together and individually were measured in OR-IFRC groundwater at pHs 5 and 7 to determine whether they cooperate or compete during denitrification. Mixed assemblages reduced NO? 3 more rapidly and more completely than any individual isolate over the course of the experiment. The results described in this article demonstrate 1) that this synthetic assemblage comprised of three physiologically distinct denitrifying bacterial isolates cooperate to achieve more complete levels of denitrification and 2) the importance of pH- and nitrite-tolerant bacteria such as Castellaniella str. 4.5A2 in minimizing NO? 2 accumulation in high-NO? 3 groundwater during bioremediation. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the free supplemental files.  相似文献   
995.
The cold springs underlain by gas hydrates on the Qinghai-Tibet Plateau (QTP) are similar to deep-sea cold seeps with respect to methane biogeochemistry. Previous studies have shown that ammonia oxidizing bacteria (AOB) and archaea (AOA) are actively present and play important roles in the carbon/nitrogen cycles in cold seeps. Studying AOA and AOB communities in the QTP cold springs will be of great importance to our understanding of carbon and nitrogen cycling dynamics related to the underlying gas hydrates on the QTP. Thus, the abundance and diversity of AOB and AOA in sediments of four cold springs underlain by gas hydrates on the QTP were determined by using quantitative polymerase chain reaction and amoA gene (encoding ammonia monooxygenase involved in ammonia oxidation) phylogenetic analysis. The results showed that the AOB and AOA amoA gene abundances were at 103–104 copies per gram of the sediments in the investigated cold springs. The AOB population consisted of Nitrosospira and Nitrosomonas in contrast with the mere presence of Nitrosospira in marine cold seeps. The AOB diversity was higher in cold springs than in cold seeps. The AOA population was mainly composed of Nitrososphaera, in contrast with the dominance of Nitrosopumilus in cold seeps. The terrestrial origin and high level of dissolved oxygen of the cold springs may be the main factors accounting for the observed differences in AOB and AOA populations between the QTP cold springs and marine cold seeps.  相似文献   
996.
In anoxic environments, methane oxidation is conducted in a syntrophic process between methanotrophic archaea (ANME) and sulfate reducing bacteria (SRB). Microbial mats consisting of ANME, SRB and other microorganisms form methane seep-related carbonate buildups in the anoxic bottom waters of the Black Sea Crimean shelf. To shed light on the localization of the biochemical processes at the level of single cells in the Black Sea microbial mats, we applied antibody-based markers for key enzymes of the relevant metabolic pathways. The dissimilatory adenosine-5′-phosphosulfate (APS) reductase, methyl-coenzyme M reductase (MCR) and methanol dehydrogenase (MDH) were selected to localize sulfate respiration, reverse methanogenesis and aerobic methane oxidation, respectively. The key enzymes could be localized by double immunofluorescence and immunocytochemistry at light- and electron microscopic levels. In this study we show that sulfate reduction is conducted synchronized and in direct proximity to reverse methanogenesis of ANME archaea. Microcolonies in interspaces between ANME/SRB express methanol dehydrogenase, which is indicative for oxidation of C1 compounds by methylotrophic or methanotrophic bacteria. Thus, in addition to syntrophic AOM, oxygen-dependent processes are also conducted by a small proportion of the microbial population.  相似文献   
997.
998.
Proteins of the Bin/amphiphysin/Rvs (BAR) domain superfamily are essential in controlling the shape and dynamics of intracellular membranes. Here, we present evidence for the unconventional function of a member of the endophilin family of BAR and Src homology 3 domain-containing proteins, namely endophilin B2, in the perinuclear organization of intermediate filaments. Using mass spectrometry analysis based on capturing endophilin B2 partners in in situ pre-established complexes in cells, we unravel the interaction of endophilin B2 with plectin 1, a variant of the cytoskeleton linker protein plectin as well as with vimentin. Endophilin B2 directly binds the N-terminal region of plectin 1 via Src homology 3-mediated interaction and vimentin indirectly via plectin-mediated interaction. The relevance of these interactions is strengthened by the selective and drastic reorganization of vimentin around nuclei upon overexpression of endophilin B2 and by the extensive colocalization of both proteins in a meshwork of perinuclear filamentous structures. By generating mutants of the endophilin B2 BAR domain, we show that this phenotype requires the BAR-mediated membrane binding activity of endophilin B2. Plectin 1 or endophilin B2 knockdown using RNA interference disturbed the perinuclear organization of vimentin. Altogether, these data suggest that the endophilin B2-plectin 1 complex functions as a membrane-anchoring device organizing and stabilizing the perinuclear network of vimentin filaments. Finally, we present evidence for the involvement of endophilin B2 and plectin 1 in nuclear positioning in individual cells. This points to the potential importance of the endophilin B2-plectin complex in the biological functions depending on nuclear migration and positioning.  相似文献   
999.
Covalently linked carboxyl-terminal segments of the β-amyloid peptide (Aβ) were tested for their qualification as minimal conformational epitopes of the naturally occurring human autoantibodies against β-amyloid (nAbs-Aβ). nAbs-Aβ specifically recognize the toxic oligomers of Aβ and not the monomeric or the fibrillar forms of Aβ. The synthetic dimers of Aβ(28–40) described herein mimic the toxic Aβ oligomers but are not kinetic intermediates with uncertain compositions. CD spectra identified a surprisingly rich conformational behavior of selected miniamyloids. We observed a highly cooperative conformational transition of β-sheet to α-helix upon the addition of the helix enforcing co-solvent hexafluoroisopropanol. The CD curves of dimer 9 resembled, in a completely reversible manner, the CD spectra measured during the irreversible fibrillation of the parent Aβ(1–40). Synthetic peptide epitopes with high affinities for nAbs-Aβ are needed to identify the physiological roles of nAbs-Aβ and are promising epitopes for vaccination experiments.  相似文献   
1000.
We have previously determined that integrin α11β1 is required on mouse periodontal ligament (PDL) fibroblasts to generate the force needed for incisor eruption. As part of the phenotype of α11?/? mice, the incisor PDL (iPDL) is thickened, due to disturbed matrix remodeling. To determine the molecular mechanism behind the disturbed matrix dynamics in the PDL we crossed α11?/? mice with the Immortomouse and isolated immortalized iPDL cells. Microarray analysis of iPDL cells cultured inside a 3D collagen gel demonstrated downregulated expression of a number of genes in α11‐deficient iPDL cells, including matrix metalloproteinase‐13 (MMP‐13) and cathepsin K. α11?/? iPDL cells in vitro displayed disturbed interactions with collagen I during contraction of attached and floating collagen lattices and furthermore displayed reduced MMP‐13 protein expression levels. The MMP‐13 specific inhibitor WAY 170523 and the Cathepsin K Inhibitor II both blocked part of the α11 integrin‐mediated collagen remodeling. In summary, our data demonstrate that in iPDL fibroblasts the mechanical strain generated by α11β1 integrin regulates molecules involved in collagen matrix dynamics. The positive regulation of α11β1‐dependent matrix remodeling, involving MMP‐13 and cathepsin K, might also occur in other types of fibroblasts and be an important regulatory mechanism for coordinated extracellular and intracellular collagen turnover in tissue homeostasis. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号