首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   8篇
  109篇
  2022年   3篇
  2021年   4篇
  2020年   1篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   7篇
  2015年   2篇
  2014年   4篇
  2013年   4篇
  2012年   8篇
  2011年   6篇
  2010年   9篇
  2009年   5篇
  2008年   8篇
  2007年   7篇
  2006年   9篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  1998年   2篇
  1997年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
91.
C1q is a versatile innate immune molecule that serves as the initiation subcomponent of the classical complement pathway. In addition, it is also a potent pattern recognition molecule, the versatility of which has fuelled its functional flexibility. C1q recognises an array of self, non-self and altered-self ligands. The broad-spectrum ligand-binding potential of C1q is facilitated by the modular organisation of the heterotrimeric globular head region, its ability to change its conformation in a very subtle way, and the manner in which this ancient molecule appears to have evolved to deal with the different types of ligands. Over recent years, molecules that resemble C1q have been put together to form the C1q family. In this review, we briefly summarise complement-dependent and complement-independent functions of C1q, its cognate receptors and key members of the rapidly growing C1q family.  相似文献   
92.
Paenibacillus lentimorbus strain WJ5, a soil isolate showed in vitro antagonistic activity against several fungal phytopathogens belonging to the ascomycetes, basidiomycetes and oomycetes. The antifungal metabolite was extracellular and could be extracted with n-butanol. Its production was initiated at the end of the exponential phase, reaching a maximum after 5 days incubation at 30°C. Crude extract of the antifungal metabolite was thermostable (121°C for 3 h) and no loss of activity was recorded when exposed to proteinase K, sodium dodecyl sulphate (1%), Tween-80 (1%) and glycerol (1%). However, cationic hexadecyltrimethylammonium bromide and lysozyme inactivated the metabolite. The antifungal metabolite was purified by silica gel thin layer chromatography and Sephadex LH-20 size exclusion chromatography. Loss of activity during acid hydrolysis indicated the peptide nature of the antifungal metabolite. The FT-IR spectrum of the antifungal metabolite confirmed the presence of the peptide and glycosidic bonds.  相似文献   
93.
Sinorhizobium fredii USDA257 forms nitrogen-fixing nodules in association with the primitive soybean cultivar 'Peking' but fails to initiate nodules on many advanced soybean cultivars, including 'McCall'. This distinction is controlled by a set of nodulation genes termed nolXWBTUV. Inactivation of any of these genes enables USDA257 to nodulate McCall and many other improved soybean cultivars. Mutation in the nolXWBTUV locus also alters the Nod factor structure resulting in the production of a novel molecule with glucose incorporated into the chitin backbone. Some of the genes located in the nolXWBTUV locus reveal sequence homologies to known components of the type III secretion system (TTSS) of plant and animal pathogenic bacteria. Recent studies have demonstrated the presence of a complete TTSS in USDA257 and few other symbiotic bacteria. The TTSS cluster of USDA257 contains 27 open reading frames out of which 10 code for the structural components of the TTSS. USDA257, when grown in presence of flavonoids, secrete several proteins called Nops (Nodulation Outer Proteins) into the extracellular environment. Genes located in the TTSS of USDA257 encode some of the extracellular proteins, such as NopX, NopB, and NopL. These type III secreted proteins appear to play an important role in regulating nodulation in a host-dependent manner. Failure to elaborate the Nops results in a drastic phenotypic effect on soybean nodulation, indicating that these proteins may play a pivotal role in soybean cultivar specificity. The secretion of Nops appears to be facilitated by novel filamentous appendages (pili) that are produced by USDA257 upon induction by flavonoids. Biochemical studies have demonstrated the close association of several Nops with the purified pili. However, it remains to be seen if the filamentous appendages can function as conduits for delivery of Nops into the host cell. This review examines the current state of our knowledge on the molecular aspects of soybean cultivar-specific nodulation by USDA257.  相似文献   
94.
Heroin is an illicit opioid drug which is commonly abused and leads to dependence and addiction. Heroin is considered a pro-drug and is rapidly converted to its major active metabolite 6-monoacetylmorphine (6-MAM) which mediates euphoria and reward through the stimulation of opioid receptors in the brain. The aim of this study was to investigate the distribution and localization of 6-MAM in the healthy Sprague Dawley rat brain following intraperitoneal (i.p) administration of heroin (10 mg/kg), using matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI), in combination with quantification via liquid chromatography mass spectrometry (LC–MS/MS). These findings revealed that 6-MAM is present both in plasma and brain tissue with a Tmax of 5 min (2.8 µg/mL) and 15 min (1.1 µg/mL), respectively. MSI analysis of the brain showed high intensities of 6-MAM in the thalamus-hypothalamus and mesocorticolimbic system including areas of the cortex, caudate putamen, and ventral pallidum regions. This finding correlates with the distribution of opioid receptors in the brain, according to literature. In addition, we report a time-dependent distribution in the levels of 6-MAM, from 1 min with the highest intensity of the drug observed at 15 min, with sparse distribution at 45 min before decreasing at 60 min. This is the first study to use MSI as a brain imaging technique to detect a morphine’s distribution over time in the brain.  相似文献   
95.
96.
97.

BACKGROUND:

Cardiomyopathies are a heterogeneous group of heart muscle disorders and are classified as 1) Hypertrophic Cardiomyopathy (HCM) 2) Dilated cardiomyopathy (DCM) 3) Restrictive cardiomyopathy (RCM) and 4) Arrhythmogenic right ventricular dysplasia (ARVD) as per WHO classification, of which HCM and DCM are common. HCM is a complex but relatively common form of inherited heart muscle disease with prevalence of 1 in 500 individuals and is commonly associated with sarcomeric gene mutations. Cardiac muscle troponin I (TNNI-3) is one such sarcomeric protein and is a subunit of the thin filament-associated troponin-tropomyosin complex involved in calcium regulation of skeletal and cardiac muscle contraction. Mutations in this gene were found to be associated with a history of sudden cardiac death in HCM patients.

AIM:

Therefore the present study aims to identify for mutations associated with troponin I gene in a set of HCM patients from Indian population.

MATERIALS AND METHODS:

Mutational analyses of 92 HCM cases were carried out following PCR based SSCP analysis.

RESULTS:

The study revealed band pattern variation in 3 cases from a group of 92 HCM patients. This band pattern variation, on sequencing revealed base changes, one at nt 2560 with G>T transversion in exon-5 region with a wobble and others at nt 2479 and nt 2478 with G>C and C>G transversions in the intronic region upstream of the exon 5 on sequencing. Further analysis showed that one of the probands showed apical form of hypertrophy, two others showing asymmetric septal hypertrophy. Two of these probands showed family history of the condition.

CONCLUSIONS:

Hence, the study supports earlier reports of involvement of TNNI-3 in the causation of apical and asymmetrical forms of hypertrophy.  相似文献   
98.
An antibacterial metabolite was isolated from Paenibacillus polymyxa HKA-15, a soybean bacterial endophyte. The purification of the crude metabolite from Paenibacillus polymyxa HKA-15 was done by column chromatography. In TLC, a spot with an R f value of 0.86 (±0.02) from the purified fraction showed bioactivity against Xanthomonas campestris pv. phaseoli M-5. In SDS-PAGE, the purified antibiotic was separated in the molecular weight range of 3.5 kDa. The exact molecular weight of the active compound was identified as 1,347.7 Da using MS-MS analysis. Infra red spectrum and 1H NMR analysis showed the presence of amino acids and fatty acids in the active compound. The characterization of the antibacterial compound revealed its lipopeptide nature. In an agar diffusion assay, the crude metabolite showed a broad spectrum of activity, being able to inhibit the growth of the fungal pathogen, Rhizoctonia bataticola, Macrophomina phaseolina and Fusarium udum. A stronger inhibition was observed against bacterial pathogens viz., X. campestris pv.phaseoli M-5, X. campestris pv. phaseoli CP-1-1, Xanthomonas oryzae, Ralstonia solanacearum and Micrococcus luteus.  相似文献   
99.
Four defective (AFM) mutants of Paenibacillus sp. HKA-15 that no longer produced the peptide antifungal metabolites were developed through ethyl methane sulfonate (EMS) mutagenesis and used for in vivo experimentation. Reduced percentage of seed germination by mutants DM1 and DM2 (22.5% and 25%, respectively) and a high percent of disease incidence (69.3% and 67%, respectively) compared to wild-strain HKA-15 (80% seed germination and 27% disease incidence) indirectly indicated the role of peptide metabolite on disease suppression. Plants treated with AFM clones showed stunted growth and the presence of pepperlike microsclerotia in the stem tissues. Light and scanning electron microscopic studies clearly showed the effect of peptide antibiosis on hyphal morphology. Exposure to crude extracts of antibiotics produced abnormal contraction of fungal cytoplasm, granulation, and fragmentation of hyphal mycelia and cell lysis. The presence of bacterial cells in the lumen of degrading fungal mycelium suggested a direct involvement of Paenibacillus sp. HKA-15 in the lysis of Rhizoctonia bataticola.  相似文献   
100.
Abiotic stresses detrimentally affect both plant and soil health, threatening food security in an ever-increasing world population. Sustainable agriculture is necessary to augment crop yield with simultaneous management of stresses. Limitations of conventional bioinoculants have shifted the focus to more effective alternatives. With the realization of the potential of rhizospheric microbiome engineering in enhancing plant's fitness under stress, efforts have accelerated in this direction. Though still in its infancy, microbiome-based engineering has gained popularity because of its advantages over the microbe-based approach. This review briefly presents major abiotic stresses afflicting arable land, followed by an introduction to the conventional approach of microbe-based enhancement of plant attributes and stress mitigation with its inherent limitations. It then focuses on the significance of the rhizospheric microbiome and possibilities of harnessing its potential by its strategic engineering for stress management. Further, success stories related to two major approaches of microbiome engineering (generation of synthetic microbial community/consortium, and host-mediated artificial selection) pertaining to stress management have been critically presented. Together with bringing forth the challenges associated with the wide application of rhizospheric microbiome engineering in agriculture, the review proposes the adoption of a combinational scheme for the same, bringing together ecological and reductionist approaches for improvised sustainable agricultural practices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号