首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   566篇
  免费   44篇
  610篇
  2024年   1篇
  2023年   3篇
  2022年   5篇
  2021年   7篇
  2020年   10篇
  2019年   9篇
  2018年   12篇
  2017年   11篇
  2016年   24篇
  2015年   31篇
  2014年   28篇
  2013年   38篇
  2012年   49篇
  2011年   47篇
  2010年   27篇
  2009年   14篇
  2008年   41篇
  2007年   37篇
  2006年   18篇
  2005年   25篇
  2004年   35篇
  2003年   24篇
  2002年   33篇
  2001年   1篇
  2000年   3篇
  1999年   8篇
  1998年   11篇
  1997年   7篇
  1996年   1篇
  1995年   3篇
  1994年   5篇
  1993年   5篇
  1992年   1篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   4篇
  1983年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   4篇
  1976年   1篇
  1975年   2篇
  1973年   2篇
  1970年   1篇
  1961年   1篇
排序方式: 共有610条查询结果,搜索用时 0 毫秒
41.
42.
The biotransformation of 2,4,6-trinitrotoluene (TNT) (175 μM) by Phanerochaete chrysosporium with molasses and citric acid at pH 4.5 was studied. In less than 2 weeks, TNT disappeared completely, but mineralization (liberated 14CO2) did not exceed 1%. A time study revealed the presence of several intermediates, marked by the initial formation of two monohydroxylaminodinitrotoluenes (2- and 4-HADNT) followed by their successive transformation to several other products, including monoaminodinitrotoluenes (ADNT). A group of nine acylated intermediates were also detected. They included 2-N-acetylamido-4,6-dinitrotoluene and its p isomer, 2-formylamido-4,6-dinitrotoluene and its p isomer (as acylated ADNT), 4-N-acetylamino-2-amino-6-nitrotoluene and 4-N-formylamido-2-amino-6-nitrotoluene (as acetylated DANT), 4-N-acetylhydroxy-2,6-dinitrotoluene and 4-N-acetoxy-2,6-dinitrotoluene (as acetylated HADNT), and finally 4-N-acetylamido-2-hydroxylamino-6-nitrotoluene. Furthermore, a fraction of HADNTs were found to rearrange to their corresponding phenolamines (Bamberger rearrangement), while another group dimerized to azoxytoluenes which in turn transformed to azo compounds and eventually to the corresponding hydrazo derivatives. After 30 days, all of these metabolites, except traces of 4-ADNT and the hydrazo derivatives, disappeared, but mineralization did not exceed 10% even after the incubation period was increased to 120 days. The biotransformation of TNT was accompanied by the appearance of manganese peroxidase (MnP) and lignin-dependent peroxidase (LiP) activities. MnP activity was observed almost immediately after TNT disappearance, which was the period marked by the appearance of the initial metabolites (HADNT and ADNT), whereas the LiP activity was observed after 8 days of incubation, corresponding to the appearance of the acyl derivatives. Both MnP and LiP activities reached their maximum levels (100 and 10 U/liter, respectively) within 10 to 15 days after inoculation.  相似文献   
43.
Summary Dehydrocholic acid (3,7,12-trioxo-5-cholanic acid) (0.5% concentration) was completely and selectively reduced to 12-ketoursodeoxycholic acid (3, 7-dihydroxy-12-oxo- 5-cholanic acid) in a membrane reactor by means of 3-hydroxysteroid dehydrogenase and 7-hydroxysteroid dehydrogenase. Coenzyme regeneration was carried out with the glucose-glucose dehydrogenase system.  相似文献   
44.
In a previous study, a marine isolate Clostridium sp. EDB2 degraded 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) under anaerobic conditions (Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J (2004c) Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun 316:816–821); however, the enzyme responsible for CL-20 degradation was not known. In the present study, we isolated and purified an enzyme, from strain EDB2, responsible for CL-20 degradation. The enzyme was membrane-associated and NADH-dependent and had a molecular weight of 56 kDa (with SDS-PAGE). N-terminal amino acid sequence of enzyme revealed that it belonged to dehydrogenase class of enzymes. The purified enzyme degraded CL-20 at a rate of 18.5 nmol/h mg protein under anaerobic conditions. Carbon and nitrogen mass balance of the products were 100 and 64%, respectively. In LC–MS–MS studies, we detected three different initial metabolites from CL-20, i.e., mono-nitroso derivative, denitrohydrogenated product, and double-denitrated isomers with molecular weight of 422, 393, and 346 Da, corresponding to presumed empirical formulas of C6H6N12O11, C6H7N11O10, and C6H6N10O8, respectively. Identity of all the three metabolites were confirmed by using ring-labeled [15N]CL-20 and the nitro-group-labeled [15NO2]CL-20. Taken together, the above data suggested that the enzyme degraded CL-20 via three different routes: Route A, via two single electron transfers necessary to release two nitro-groups from CL-20 to produce two double-denitrated isomers; Route B, via a hydride transfer necessary to produce a denitrohydrogenated product; and Route C, via transfer of two redox equivalents to CL-20 necessary to produce a mono-nitroso derivative of CL-20. This is the first biochemical study which showed that CL-20 degradation can be initiated via more than one pathway.  相似文献   
45.
River and stream biofilms in mediterranean fluvial ecosystems face both extreme seasonality as well as arrhythmic fluctuations. The hydrological extremes (droughts and floods) impose direct changes in water availability but also in the quantity and quality of organic matter and nutrients that sustain the microbial growth. This review analyzes how these ecological pulses might determine unique properties of biofilms developing in mediterranean streams. The paper brings together data from heterotrophic and autotrophic community structure, and extracellular enzyme activities in biofilms in mediterranean streams. Mediterranean stream biofilms show higher use of peptides during the favorable period for epilithic algae development (spring), and preferential use of cellulose and hemicellulose in autumn as a response to allochthonous input. The drying process causes the reduction in bacterial production and chlorophyll biomass, but the rapid recovery of both autotrophs and heterotrophs with rewetting indicates their adaptability to fluctuations. Bacteria surviving the drought are mainly associated with sediment and leaf litter which serve as “humid refuges”. Some algae and cyanobacteria show resistant strategies to cope with the drought stress. The resistance to these fluctuations is strongly linked to the streambed characteristics (e.g., sediment grain size, organic matter accumulation, nutrient content).  相似文献   
46.
Osteosarcoma is the most common malignant primary bone tumor in children and adolescents. The clinical outcome for osteosarcoma remains discouraging despite aggressive surgery and intensive radiotherapy and chemotherapy regimens. Thus, novel therapeutic approaches are needed. Previously, we have shown that inorganic phosphate (Pi) inhibits proliferation and aggressiveness of human osteosarcoma U2OS cells identifying adenylate cyclase, beta3 integrin, Rap1, ERK1/2 as proteins whose expression and function are relevantly affected in response to Pi. In this study, we investigated whether Pi could affect chemosensitivity of osteosarcoma cells and the underlying molecular mechanisms. Here, we report that Pi inhibits proliferation of p53‐wild type U2OS cells (and not of p53‐null Saos and p53‐mutant MG63 cells) by slowing‐down cell cycle progression, without apoptosis occurrence. Interestingly, we found that Pi strongly enhances doxorubicin‐induced cytotoxicity in U2OS, and not in Saos and MG63 cells, by apoptosis induction, as revealed by a marked increase of sub‐G1 population, Bcl‐2 downregulation, caspase‐3 activation, and PARP cleavage. Remarkably, Pi/doxorubicin combination‐induced cytotoxicity was accompanied by an increase of p53 protein levels and of p53 target genes mdm2, p21 and Bax, and was significantly reduced by the p53 inhibitor pifithrine‐alpha. Moreover, the doxorubicin‐induced cytotoxicity was associated with ERK1/2 pathway inhibition in response to Pi. Altogether, our data enforce the evidence of Pi as a novel signaling molecule capable of inhibiting ERK pathway and inducing sensitization to doxorubicin of osteosarcoma cells by p53‐dependent apoptosis, implying that targeting Pi levels might represent a rational strategy for improving osteosarcoma therapy. J. Cell. Physiol. 228: 198–206, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
47.
The antioxidative response of grapevine leaves (Vitis vinifera cv. Trebbiano) affected by the presence of grapevine fanleaf virus was studied during the summer of 2010 at three different harvest times (July 1st and 26th, and August 30th). At the first and second harvest, infected leaves showed increases in the concentration of superoxide radical and hydrogen peroxide, the latter increasing for enhanced activity of superoxide dismutase. In contrast, at the last harvest time, increases in the ascorbate pool and ascorbate peroxidase activity maintained hydrogen peroxide to control levels. The glutathione pool was negatively affected as summer progressed, showing a decrease in its total and reduced form amounts. At the same time, increases in the ascorbate pool were observed, making antioxidant defenses of grapevine effective also at the last harvest time. Increases in phenolic acids, and in particular in p-hydroxybenzoic acid, at the first and second harvest might have enhanced the efficiency of the antioxidant system through an interrelation between a peroxidase/phenol/ascorbate system and the NADPH/glutathione/ascorbate cycle. The lack of increase in p-hydroxybenzoic acid at the third harvest could be due instead to the enhanced utilization of this acid for hydrogen peroxide detoxification. With time, grapevine plants lost their capacity to contrast the spread of grapevine fanleaf virus, but acquired a greater ability to counteract pathogen-induced oxidative stress, being endowed with more reduced antioxidant pools.  相似文献   
48.
Metamorphosis in the ascidian Ciona intestinalis is a very complex process which converts a swimming tadpole to an adult. The process involves reorganisation of the body plan and a remarkable regression of the tail, which is controlled by caspase-dependent apoptosis. However, the endogenous signals triggering apoptosis and metamorphosis are little explored. Herein, we report evidence that nitric oxide (NO) regulates tail regression in a dose-dependent manner, acting on caspase-dependent apoptosis. An increase or decrease of NO levels resulted in a delay or acceleration of tail resorption, without affecting subsequent juvenile development. A similar hastening effect was induced by suppression of cGMP-dependent NO signalling. Inhibition of NO production resulted in an increase in caspase-3-like activity with respect to untreated larvae. Detection of endogenously activated caspase-3 and NO revealed the existence of a spatial correlation between the diminution of the NO signal and caspase-3 activation during the last phases of tail regression. Real-time PCR during development, from early larva to early juveniles, showed that during all stages examined, NO synthase (NOS) is always more expressed than arginase and it reaches the maximum value at late larva, the stage immediately preceding tail resorption. The spatial expression pattern of NOS is very dynamic, moving rapidly along the body in very few hours, from the anterior part of the trunk to central nervous system (CNS), tail and new forming juvenile digestive organs. NO detection revealed free diffusion from the production sites to other cellular districts. Overall, the results of this study provide a new important link between NO signalling and apoptosis during metamorphosis in C. intestinalis and hint at novel roles for the NO signalling system in other developmental and metamorphosis-related events preceding and following tail resorption.  相似文献   
49.
50.
Mitochondria play an important role on the entire cellular copper homeostatic mechanisms. Alteration of cellular copper levels may thus influence mitochondrial proteome and its investigation represents an important contribution to the general understanding of copper-related cellular effects. In these study we have performed an organelle targeted proteomic investigation focusing our attention on the effect of non-lethal 1mM copper concentration on Saccharomyces cerevisiae mitochondrial proteome. Functional copper effects on yeast mitochondrial proteome were evaluated by using both 2D electrophoresis (2-DE) and liquid chromatography coupled with tandem mass spectrometry. Proteomic data have been then analyzed by different unsupervised meta-analysis approaches that highlight the impairment of mitochondrial functions and the activation of oxidative stress response. Interestingly, our data have shown that stress response generated by 1mM copper treatment determines the activation of S. cerevisiae survival pathway. To investigate these findings we have treated yeast cells responsiveness to copper with hydrogen peroxide and observed a protective role of this metal. These results are suggestive of a copper role in the protection from oxidative stress possibly due to the activation of mechanisms involved in cellular survival and growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号