全文获取类型
收费全文 | 103篇 |
免费 | 7篇 |
专业分类
110篇 |
出版年
2022年 | 2篇 |
2020年 | 1篇 |
2019年 | 3篇 |
2018年 | 3篇 |
2016年 | 2篇 |
2015年 | 3篇 |
2014年 | 3篇 |
2013年 | 1篇 |
2012年 | 12篇 |
2011年 | 8篇 |
2010年 | 7篇 |
2009年 | 2篇 |
2008年 | 5篇 |
2007年 | 1篇 |
2006年 | 4篇 |
2005年 | 4篇 |
2004年 | 4篇 |
2003年 | 5篇 |
2002年 | 2篇 |
2001年 | 3篇 |
2000年 | 3篇 |
1999年 | 3篇 |
1994年 | 1篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 2篇 |
1987年 | 1篇 |
1985年 | 2篇 |
1982年 | 1篇 |
1981年 | 4篇 |
1980年 | 4篇 |
1979年 | 1篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1973年 | 2篇 |
1971年 | 1篇 |
1962年 | 1篇 |
1880年 | 1篇 |
1877年 | 1篇 |
排序方式: 共有110条查询结果,搜索用时 15 毫秒
31.
32.
Jared L. Delahaye Olivia K. Foster Annalise Vine Daniel S. Saxton Thomas P. Curtin Hannah Somhegyi Rebecca Salesky Greg J. Hermann 《Molecular biology of the cell》2014,25(7):1073-1096
As early endosomes mature, the SAND-1/CCZ-1 complex acts as a guanine nucleotide exchange factor (GEF) for RAB-7 to promote the activity of its effector, HOPS, which facilitates late endosome–lysosome fusion and the consumption of AP-3–containing vesicles. We show that CCZ-1 and the HOPS complex are essential for the biogenesis of gut granules, cell type–specific, lysosome-related organelles (LROs) that coexist with conventional lysosomes in Caenorhabditis elegans intestinal cells. The HOPS subunit VPS-18 promotes the trafficking of gut granule proteins away from lysosomes and functions downstream of or in parallel to the AP-3 adaptor. CCZ-1 also acts independently of AP-3, and ccz-1 mutants mistraffic gut granule proteins. Our results indicate that SAND-1 does not participate in the formation of gut granules. In the absence of RAB-7 activity, gut granules are generated; however, their size and protein composition are subtly altered. These observations suggest that CCZ-1 acts in partnership with a protein other than SAND-1 as a GEF for an alternate Rab to promote gut granule biogenesis. Point mutations in GLO-1, a Rab32/38-related protein, predicted to increase spontaneous guanine nucleotide exchange, specifically suppress the loss of gut granules by ccz-1 and glo-3 mutants. GLO-3 is known to be required for gut granule formation and has homology to SAND-1/Mon1–related proteins, suggesting that CCZ-1 functions with GLO-3 upstream of the GLO-1 Rab, possibly as a GLO-1 GEF. These results support LRO formation occurring via processes similar to conventional lysosome biogenesis, albeit with key molecular differences. 相似文献
33.
Schmidt PS Paaby AB Heschel MS 《Evolution; international journal of organic evolution》2005,59(12):2616-2625
The dipteran Drosophila melanogaster can express a form of reproductive quiescence or diapause when exposed to low temperature and shortened photoperiod. Among natural populations in the eastern United States, the frequency of lines that express reproductive diapause in the laboratory varies substantially and predictably with latitudinal origin. The goals of the present study were twofold: (1) to examine the impact of genetic variance for diapause expression on multiple traits associated with organismal fitness; and (2) to evaluate the potential for fitness trade-offs between diapause and nondiapause phenotypes that may result in the observed cline. Even prior to diapause entry or expression, inbred lines that express and do not express reproductive diapause in laboratory assays were constitutively distinct for life span, age-specific mortality rates, fecundity profiles, resistance to cold and starvation stress, lipid content, development time, and egg-to-adult viability. Furthermore, estimates of genetic correlations based on line means revealed significant differentiation for genetic variance/covariance matrices between diapause and nondiapause lines. The data indicate the potential for life-history trade-offs associated with variation for the diapause phenotype. The observed cline in diapause incidence in the eastern United States may be generated by these tradeoffs and the associated spatial and/or temporal variation in relative fitness of these two phenotypes in natural populations. 相似文献
34.
35.
Phosphatidylethanolamine is an important inner-leaflet phospholipid, and CTP:phosphoethanolamine cytidylyltransferase-Pcyt2 acts as the main regulator of the de novo phosphatidylethanolamine synthesis from ethanolamine and diacylglycerol. Complete deletion of the mouse Pcyt2 gene is embryonic lethal, and the single-allele deficiency leads to development of the metabolic syndrome phenotype, including liver steatosis, hypertriglyceridemia, obesity, and insulin resistance. This study aimed to specifically elucidate the mechanisms of hypertriglyceridemia in Pcyt2 heterozygous mice (Pcyt2(+/-)). Evidence here shows that unlike 8 week-old mice, 32 week- and 42 week-old Pcyt2(+/-) mice experience increased VLDL secretion and liver microsomal triglyceride transfer protein activity. Older Pcyt2(+/-) mice also demonstrate increased levels of postprandial plasma TAGs, increased stimulation of genes responsible for intestinal lipid absorption, transport and chylomicron secretion, and dramatically elevated plasma Angptl4, apoB-100, and apoB-48 content. In addition, plasma HL and LPL activities and TAG clearance following a lipid challenge were significantly reduced in Pcyt2(+/-) mice relative to control littermates. Collectively, these results establish that the hypertriglyceridemia that accompanies Pcyt2 deficiency is the result of multiple metabolic adaptations, including elevated hepatic and intestinal lipoprotein secretion and stimulated expression and/or activity of genes involved in lipid absorption and transport and lipoprotein assembly, together with reduced plasma TAG clearance and utilization with peripheral tissues. 相似文献
36.
N-Glycosylation of a mouse IgG expressed in transgenic tobacco plants 总被引:11,自引:0,他引:11
Cabanes-Macheteau M Fitchette-Lainé AC Loutelier-Bourhis C Lange C Vine ND Ma JK Lerouge P Faye L 《Glycobiology》1999,9(4):365-372
Since plants are emerging as an important system for the expression of recombinant glycoproteins, especially those intended for therapeutic purposes, it is important to scrutinize to what extent glycans harbored by mammalian glycoproteins produced in transgenic plants differ from their natural counterpart. We report here the first detailed analysis of the glycosylation of a functional mammalian glycoprotein expressed in a transgenic plant. The structures of the N-linked glycans attached to the heavy chains of the monoclonal antibody Guy's 13 produced in transgenic tobacco plants (plantibody Guy's 13) were identified and compared to those found in the corresponding IgG1 of murine origin. Both N-glycosylation sites located on the heavy chain of the plantibody Guy's 13 are N-glycosylated as in mouse. However, the number of Guy's 13 glycoforms is higher in the plant than in the mammalian expression system. Despite the high structural diversity of the plantibody N-glycans, glycosylation appears to be sufficient for the production of a soluble and biologically active IgG in the plant system. In addition to high-mannose-type N-glycans, 60% of the oligosaccharides N-linked to the plantibody have beta(1, 2)-xylose and alpha(1, 3)-fucose residues linked to the core Man3GlcNAc2. These plant-specific oligosaccharide structures are not a limitation to the use of plantibody Guy's 13 for topical immunotherapy. However, their immunogenicity may raise concerns for systemic applications of plantibodies in human. 相似文献
37.
The ability of enteric bacteria to protect themselves against reactive nitrogen species generated by their own metabolism, or as part of the innate immune response, is critical to their survival. One important defence mechanism is their ability to reduce NO (nitric oxide) to harmless products. The highest rates of NO reduction by Escherichia coli K-12 were detected after anaerobic growth in the presence of nitrate. Four proteins have been implicated as catalysts of NO reduction: the cytoplasmic sirohaem-containing nitrite reductase, NirB; the periplasmic cytochrome c nitrite reductase, NrfA; the flavorubredoxin NorV and its associated oxidoreductase, NorW; and the flavohaemoglobin, Hmp. Single mutants defective in any one of these proteins and even the mutant defective in all four proteins reduced NO at the same rate as the parent. Clearly, therefore, there are mechanisms of NO reduction by enteric bacteria that remain to be characterized. Far from being minor pathways, the currently unknown pathways are adequate to sustain almost optimal rates of NO reduction, and hence potentially provide significant protection against nitrosative stress. 相似文献
38.
Prion-like behavior of MAVS in RIG-I signaling 总被引:1,自引:0,他引:1
39.
BA Zaniello DA Kessler KM Vine KM Grima SA Weisenberg 《PLoS neglected tropical diseases》2012,6(7):e1771
We retrospectively calculated the prevalence and epidemiologic characteristics of Chagas infection in the New York blood donor population over three years utilizing the New York Blood Center's database of the New York metropolitan area donor population. Seventy Trypanosoma cruzi positive donors were identified from among 876,614 donors over a 3-year period, giving an adjusted prevalence of 0.0083%, with 0.0080% in 2007, 0.0073% in 2008, and 0.0097% in 2009. When filtered only for self-described "Hispanic/Latino" donors, there were 52 Chagas positive donors in that 3-year period (among 105,122 self-described Hispanic donors) with an adjusted prevalence of 0.052%, with 0.055% in 2007, 0.047% in 2008, and 0.053% in 2009. In conclusion, we found a persistent population of patients with Chagas infection in the New York metropolitan area donor population. There was geographic localization of cases which aligned with Latin American immigration clusters. 相似文献
40.