首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   963篇
  免费   68篇
  2023年   3篇
  2022年   8篇
  2021年   19篇
  2020年   11篇
  2019年   15篇
  2018年   20篇
  2017年   20篇
  2016年   22篇
  2015年   58篇
  2014年   42篇
  2013年   93篇
  2012年   103篇
  2011年   84篇
  2010年   65篇
  2009年   41篇
  2008年   60篇
  2007年   61篇
  2006年   56篇
  2005年   59篇
  2004年   59篇
  2003年   41篇
  2002年   23篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1998年   6篇
  1997年   5篇
  1996年   7篇
  1995年   4篇
  1994年   5篇
  1993年   8篇
  1992年   5篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1978年   3篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有1031条查询结果,搜索用时 31 毫秒
121.
Flavescence dorée (FD) is a grapevine disease that afflicts several wine production areas in Europe, from Portugal to Serbia. FD is caused by a bacterium, "Candidatus Phytoplasma vitis," which is spread throughout the vineyards by a leafhopper, Scaphoideus titanus (Cicadellidae). After collection of S. titanus specimens from FD-contaminated vineyards in three different areas in the Piedmont region of Italy, we performed a survey to characterize the bacterial microflora associated with this insect. Using length heterogeneity PCR with universal primers for bacteria we identified a major peak associated with almost all of the individuals examined (both males and females). Characterization by denaturing gradient gel electrophoresis confirmed the presence of a major band that, after sequencing, showed a 97 to 99% identity with Bacteroidetes symbionts of the "Candidatus Cardinium hertigii" group. In addition, electron microscopy of tissues of S. titanus fed for 3 months on phytoplasma-infected grapevine plants showed bacterial cells with the typical morphology of "Ca. Cardinium hertigii." This endosymbiont, tentatively designated ST1-C, was found in the cytoplasm of previtellogenic and vitellogenic ovarian cells, in the follicle cells, and in the fat body and salivary glands. In addition, cell morphologies resembling those of "Ca. Phytoplasma vitis" were detected in the midgut, and specific PCR assays indicated the presence of the phytoplasma in the gut, fat body and salivary glands. These results indicate that ST1-C and "Ca. Phytoplasma vitis" have a complex life cycle in the body of S. titanus and are colocalized in different organs and tissues.  相似文献   
122.
Fgf8 and Tbx1 have been shown to interact in patterning the aortic arch, and both genes are required in formation and growth of the outflow tract of the heart. However, the nature of the interaction of the two genes is unclear. We have utilized a novel Tbx1(Fgf8) allele which drives Fgf8 expression in Tbx1-positive cells and an inducible Cre-LoxP recombination system to address the role of Fgf8 in Tbx1 positive cells in modulating cardiovascular development. Results support a requirement of Fgf8 in Tbx1 expressing cells to finely control patterning of the aortic arch and great arteries specifically during the pharyngeal arch artery remodeling process and indicate that the endoderm is the most likely site of this interaction. Furthermore, our data suggest that Fgf8 and Tbx1 play independent roles in regulating outflow tract development. This finding is clinically relevant since TBX1 is the candidate for DGS/VCFS, characterized clinically by variable expressivity and reduced penetrance of cardiovascular defects; Fgf8 gene variants may provide molecular clues to this variability.  相似文献   
123.
Multicenter studies and biobanking projects require blood transportation from the participating center to a central collection or diagnostic laboratory. The impact of time delays between venous blood collection and peripheral blood mononuclear cells (PBMC) isolation prior to RNA extraction may affect the quality and quantity of isolated nucleic acids for genomic applications. Thus, standard operating procedure (SOP) optimization for the treatment of biological samples before RNA extraction is crucial in a biological repository. In order to define SOPs for whole blood preservation prior to RNA extraction, we sought to determine whether different blood storage times (0, 3, 6, 10, 24, and 30 hours) prior to PBMCs isolation and storage at -80°C, could affect the quality and quantity of extracted RNA. After spectrophotometric quantification, the quality and integrity of RNA were assessed by agarose gel electrophoresis, RNA integrity number and real time-PCR (RT-PCR).?Across the different time points we did not observe significant differences within the first 24 hours of blood storage at room temperature, while a significant loss in RNA yield and integrity was detected between 24 and 30 hours. We conclude that time delays before PBMCs isolation prior to RNA extraction may have a significant impact on downstream molecular biological applications.  相似文献   
124.
Osteosarcoma is the second leading cause of cancer‐related death for children and young adults. In this study, we have subcutaneously injected—with and without matrigel—athymic mice (Fox1nu/nu) with human osteosarcoma 3AB‐OS pluripotent cancer stem cells (CSCs), which we previously isolated from human osteosarcoma MG63 cells. Engrafted 3AB‐OS cells were highly tumorigenic and matrigel greatly accelerated both tumor engraftment and growth rate. 3AB‐OS CSC xenografts lacked crucial regulators of beta‐catenin levels (E‐cadherin, APC, and GSK‐3beta), and crucial factors to restrain proliferation, resulting therefore in a strong proliferation potential. During the first weeks of engraftment 3AB‐OS‐derived tumors expressed high levels of pAKT, beta1‐integrin and pFAK, nuclear beta‐catenin, c‐Myc, cyclin D2, along with high levels of hyperphosphorylated‐inactive pRb and anti‐apoptotic proteins such as Bcl‐2 and XIAP, and matrigel increased the expression of proliferative markers. Thereafter 3AB‐OS tumor xenografts obtained with matrigel co‐injection showed decreased proliferative potential and AKT levels, and undetectable hyperphosphorylated pRb, whereas beta1‐integrin and pFAK levels still increased. Engrafted tumor cells also showed multilineage commitment with matrigel particularly favoring the mesenchymal lineage. Concomitantly, many blood vessels and muscle fibers appeared in the tumor mass. Our findings suggest that matrigel might regulate 3AB‐OS cell behavior providing adequate cues for transducing proliferation and differentiation signals triggered by pAKT, beta1‐integrin, and pFAK and addressed by pRb protein. Our results provide for the first time a mouse model that recapitulates in vivo crucial features of human osteosarcoma CSCs that could be used to test and predict the efficacy in vivo of novel therapeutic treatments. J. Cell. Biochem. 113: 3380–3392, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
125.
Balaenidae (right whales) are large, critically endangered baleen whales represented by four living species. The evolutionary relationships of balaenids are poorly known, with the number of genera, relationships to fossil taxa, and position within Mysticeti in contention. This study employs a comprehensive set of morphological characters to address aspects of balaenid phylogeny. A sister‐group relationship between neobalaenids and balaenids is strongly supported, although this conflicts with molecular evidence, which may be an artifact of long‐branch attraction (LBA). Monophyly of Balaenidae is supported, and three major clades are recognized: (1) extinct genus Balaenula, (2) extant and extinct species of the genus Eubalaena, and (3) extant and extinct species of the genus Balaena plus the extinct taxon, Balaenella. The relationships of these clades to one another, as well as to the early Miocene stem balaenid, Morenocetus parvus, remain unresolved. Pliocene taxa, Balaenula astensis and Balaenula balaenopsis, form a clade that is the sister group to the Japanese Pliocene Balaenula sp. Eubalaena glacialis and Pliocene Eubalaena belgica, are in an unresolved polytomy with a clade including E. japonica and E. australis. Extant and fossil species of Balaena form a monophyletic group that is sister group to the Dutch Pliocene Balaenella, although phylogenetic relationships within Balaena remain unresolved.  相似文献   
126.
In this work, we examine regulation of DNA methyltransferase 1 (DNMT1) by the DNA damage inducible protein, GADD45α. We used a system to induce homologous recombination (HR) at a unique double-strand DNA break in a GFP reporter in mammalian cells. After HR, the repaired DNA is hypermethylated in recombinant clones showing low GFP expression (HR-L expressor class), while in high expressor recombinants (HR-H clones) previous methylation patterns are erased. GADD45α, which is transiently induced by double-strand breaks, binds to chromatin undergoing HR repair. Ectopic overexpression of GADD45α during repair increases the HR-H fraction of cells (hypomethylated repaired DNA), without altering the recombination frequency. Conversely, silencing of GADD45α increases methylation of the recombined segment and amplifies the HR-L expressor (hypermethylated) population. GADD45α specifically interacts with the catalytic site of DNMT1 and inhibits methylation activity in vitro. We propose that double-strand DNA damage and the resulting HR process involves precise, strand selected DNA methylation by DNMT1 that is regulated by GADD45α. Since GADD45α binds with high avidity to hemimethylated DNA intermediates, it may also provide a barrier to spreading of methylation during or after HR repair.  相似文献   
127.
Tumor-infiltrating lymphocytes (TILs) have been successfully used for adoptive cell transfer (ACT) immunotherapy; however, due to their scarce availability, this therapy is possible for a limited fraction of cutaneous melanoma patients. We assessed whether an effective protocol for ex vivo T-cell expansion from peripheral blood mononuclear cells (PBMCs), suitable for ACT of both cutaneous and ocular melanoma patients, could be identified. PBMCs from both cutaneous and ocular melanoma patients were stimulated in vitro with autologous, irradiated melanoma cells (mixed lymphocyte tumor cell culture; MLTCs) in the presence of IL-2 and IL-15 followed by the rapid expansion protocol (REP). The functional activity of these T lymphocytes was characterized and compared with that of TILs. In addition, the immune infiltration in vivo of ocular melanoma lesions was analyzed. An efficient in vitro MLTC expansion of melanoma reactive T cells was achieved from all PBMC's samples obtained in 7 cutaneous and ocular metastatic melanoma patients. Large numbers of melanoma-specific T cells could be obtained when the REP protocol was applied to these MLTCs. Most MLTCs were enriched in non-terminally differentiated T(EM) cells homogeneously expressing co-stimulatory molecules (e.g., NKG2D, CD28, CD134, CD137). A similar pattern of anti-tumor activity, in association with a more variable expression of co-stimulatory molecules, was detected on short-term in vitro cultured TILs isolated from the same patients. In these ocular melanoma patients, we observed an immune infiltrate with suppressive characteristics and a low rate of ex vivo growing TILs (28.5% of our cases). Our MLTC protocol overcomes this limitation, allowing the isolation of T lymphocytes with effector functions even in these patients. Thus, anti-tumor circulating PBMC-derived T cells could be efficiently isolated from melanoma patients by our novel ex vivo enrichment protocol. This protocol appears suitable for ACT studies of cutaneous and ocular melanoma patients.  相似文献   
128.
Increasing evidence implicates Aβ peptides self-assembly and fibril formation as crucial events in the pathogenesis of Alzheimer disease. Thus, inhibiting Aβ aggregation, among others, has emerged as a potential therapeutic intervention for this disorder. Herein, we employed 3-aminopyrazole as a key fragment in our design of non-dye compounds capable of interacting with Aβ42 via a donor-acceptor-donor hydrogen bond pattern complementary to that of the β-sheet conformation of Aβ42. The initial design of the compounds was based on connecting two 3-aminopyrazole moieties via a linker to identify suitable scaffold molecules. Additional aryl substitutions on the two 3-aminopyrazole moieties were also explored to enhance π-π stacking/hydrophobic interactions with amino acids of Aβ42. The efficacy of these compounds on inhibiting Aβ fibril formation and toxicity in vitro was assessed using a combination of biophysical techniques and viability assays. Using structure activity relationship data from the in vitro assays, we identified compounds capable of preventing pathological self-assembly of Aβ42 leading to decreased cell toxicity.  相似文献   
129.
UV-B is an abiotic environmental stress in both plants and animals. Abscisic acid (ABA) is a phytohormone regulating fundamental physiological functions in plants, including response to abiotic stress. We previously demonstrated that ABA is an endogenous stress hormone also in animal cells. Here, we investigated whether autocrine ABA regulates the response to UV-B of human granulocytes and keratinocytes, the cells involved in UV-triggered skin inflammation. The intracellular ABA concentration increased in UV-B-exposed granulocytes and keratinocytes and ABA was released into the supernatant. The UV-B-induced production of NO and of reactive oxygen species (ROS), phagocytosis, and cell migration were strongly inhibited in granulocytes irradiated in the presence of a monoclonal antibody against ABA. Moreover, presence of the same antibody strongly inhibited release of NO, prostaglandin E2 (PGE(2)), and tumor necrosis factor-α (TNF-α) by UV-B irradiated keratinocytes. Lanthionine synthetase C-like protein 2 (LANCL2) is required for the activation of the ABA signaling pathway in human granulocytes. Silencing of LANCL2 in human keratinocytes by siRNA was accompanied by abrogation of the UV-B-triggered release of PGE(2), TNF-α, and NO and ROS production. These results indicate that UV-B irradiation induces ABA release from human granulocytes and keratinocytes and that autocrine ABA stimulates cell functions involved in skin inflammation.  相似文献   
130.
Activated sulfate in the form of 3'-phosphoadenosine 5'-phosphosulfate (PAPS) is needed for all sulfation reactions in eukaryotes with implications for the build-up of extracellular matrices, retroviral infection, protein modification, and steroid metabolism. In metazoans, PAPS is produced by bifunctional PAPS synthases (PAPSS). A major question in the field is why two human protein isoforms, PAPSS1 and -S2, are required that cannot complement for each other. We provide evidence that these two proteins differ markedly in their stability as observed by unfolding monitored by intrinsic tryptophan fluorescence as well as circular dichroism spectroscopy. At 37 °C, the half-life for unfolding of PAPSS2 is in the range of minutes, whereas PAPSS1 remains structurally intact. In the presence of their natural ligand, the nucleotide adenosine 5'-phosphosulfate (APS), PAPS synthase proteins are stabilized. Invertebrates only possess one PAPS synthase enzyme that we classified as PAPSS2-type by sequence-based machine learning techniques. To test this prediction, we cloned and expressed the PPS-1 protein from the roundworm Caenorhabditis elegans and also subjected this protein to thermal unfolding. With respect to thermal unfolding and the stabilization by APS, PPS-1 behaved like the unstable human PAPSS2 protein suggesting that the less stable protein is evolutionarily older. Finally, APS binding more than doubled the half-life for unfolding of PAPSS2 at physiological temperatures and effectively prevented its aggregation on a time scale of days. We propose that protein stability is a major contributing factor for PAPS availability that has not as yet been considered. Moreover, naturally occurring changes in APS concentrations may be sensed by changes in the conformation of PAPSS2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号