首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   26篇
  2023年   1篇
  2022年   3篇
  2021年   13篇
  2020年   3篇
  2019年   3篇
  2018年   7篇
  2017年   1篇
  2016年   7篇
  2015年   13篇
  2014年   15篇
  2013年   10篇
  2012年   17篇
  2011年   15篇
  2010年   10篇
  2009年   9篇
  2008年   12篇
  2007年   10篇
  2006年   5篇
  2005年   8篇
  2004年   11篇
  2003年   12篇
  2002年   16篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
  1967年   1篇
排序方式: 共有220条查询结果,搜索用时 31 毫秒
11.
The action pattern of several amylases was studied at 35, 50, and 70 degrees C using potato amylose, a soluble (Red Starch) and insoluble (cross-linked amylose) chromophoric substrate. With potato amylose as substrate, Bacillus stearothermophilus alpha-amylase (BStA) and porcine pancreatic alpha-amylase displayed a high degree of multiple attack (DMA, i.e., the number of bonds broken during the lifetime of an enzyme-substrate complex minus one), the fungal alpha-amylase from Aspergillus oryzae a low DMA, and the alpha-amylases from B. licheniformis, Thermoactinomyces vulgaris, B. amyloliquifaciens, and B. subtilis an intermediate DMA. These data are discussed in relation to structural properties of the enzymes. The level of multiple attack (LMA), based on the relation between the drop in iodine binding of amylose and the increase in total reducing value, proved to be a good alternative for DMA measurements. The LMA of the endo-amylases increased with temperature to a degree depending on the amylase. In contrast, BStA showed a decreased LMA when temperature was raised. Furthermore, different enzymes had different activities on Red Starch and cross-linked amylose. Hence, next to the temperature, the action pattern of alpha-amylases is influenced by structural parameters of the starch substrate.  相似文献   
12.
An extracellular chlorogenic acid esterase from Ustilago maydis (UmChlE) was purified to homogeneity by using three separation steps, including anion-exchange chromatography on a Q Sepharose FF column, preparative isoelectric focusing (IEF), and, finally, a combination of affinity chromatography and hydrophobic interaction chromatography on polyamide. SDS-PAGE analysis suggested a monomeric protein of ∼71 kDa. The purified enzyme showed maximal activity at pH 7.5 and at 37°C and was active over a wide pH range (3.5 to 9.5). Previously described chlorogenic acid esterases exhibited a comparable affinity for chlorogenic acid, but the enzyme from Ustilago was also active on typical feruloyl esterase substrates. Kinetic constants for chlorogenic acid, methyl p-coumarate, methyl caffeate, and methyl ferulate were as follows: Km values of 19.6 μM, 64.1 μM, 72.5 μM, and 101.8 μM, respectively, and kcat/Km values of 25.83 mM−1 s−1, 7.63 mM−1 s−1, 3.83 mM−1 s−1 and 3.75 mM−1 s−1, respectively. UmChlE released ferulic, p-coumaric, and caffeic acids from natural substrates such as destarched wheat bran (DSWB) and coffee pulp (CP), confirming activity on complex plant biomass. The full-length gene encoding UmChlE consisted of 1,758 bp, corresponding to a protein of 585 amino acids, and was functionally produced in Pichia pastoris GS115. Sequence alignments with annotated chlorogenic acid and feruloyl esterases underlined the uniqueness of this enzyme.  相似文献   
13.
The explosion in gene sequence data and technological breakthroughs in protein structure determination inspired the launch of structural genomics (SG) initiatives. An often stated goal of structural genomics is the high-throughput structural characterisation of all protein sequence families, with the long-term hope of significantly impacting on the life sciences, biotechnology and drug discovery. Here, we present a comprehensive analysis of solved SG targets to assess progress of these initiatives. Eleven consortia have contributed 316 non-redundant entries and 323 protein chains to the Protein Data Bank (PDB), and 459 and 393 domains to the CATH and SCOP structure classifications, respectively. The quality and size of these proteins are comparable to those solved in traditional structural biology and, despite huge scope for duplicated efforts, only 14% of targets have a close homologue (>/=30% sequence identity) solved by another consortium. Analysis of CATH and SCOP revealed the significant contribution that structural genomics is making to the coverage of superfamilies and folds. A total of 67% of SG domains in CATH are unique, lacking an already characterised close homologue in the PDB, whereas only 21% of non-SG domains are unique. For 29% of domains, structure determination revealed a remote evolutionary relationship not apparent from sequence, and 19% and 11% contributed new superfamilies and folds. The secondary structure class, fold and superfamily distributions of this dataset reflect those of the genomes. The domains fall into 172 different folds and 259 superfamilies in CATH but the distribution is highly skewed. The most populous of these are those that recur most frequently in the genomes. Whilst 11% of superfamilies are bacteria-specific, most are common to all three superkingdoms of life and together the 316 PDB entries have provided new and reliable homology models for 9287 non-redundant gene sequences in 206 completely sequenced genomes. From the perspective of this analysis, it appears that structural genomics is on track to be a success, and it is hoped that this work will inform future directions of the field.  相似文献   
14.
The synthesis, biochemical evaluation and molecular modelling of a series of N-alkylated 4-(4(')-aminobenzyl)-2-oxazolidinones is described involving the derivatisation of the starting R- or S-enantiomer of 4-benzyl-2-oxazolidinones. The compounds were tested for human placental aromatase (AR) inhibition in vitro and were found, in general, to be more potent than the standard compound, aminoglutethimide (AG). The inhibitory activity of the compounds was rationalised through the use of the novel substrate-heme complex (SHC) approach and suggests that the S-enantiomer based compounds protrude beyond the C(13), C(17), and C(16) area of the steroid backbone, resulting in steric hindrance with the active site of AR and thus reduced inhibitory activity. The R-enantiomer based compounds do not protrude in the same area and as such are not thought to undergo any steric hindrance and in comparison to the S-enantiomer, possess greater inhibitory activity.  相似文献   
15.
16.
  • 1 The disruption of host‐finding cues has been proposed as a key mechanism underlying the lower damage caused by phytophagous insects in mixed forests. We tested this hypothesis by investigating the distribution of pine processionary moth Thaumetopoea pityocampa (Denis & Schiffer‐Müller) (Lepidoptera) infestation at the edges of pure stands of Pinus pinaster (AÏton) at some distance from nonhost trees (Experiment 1) or bordered in part by a broadleaved hedgerow (Experiment 2).
  • 2 An ‘edge effect' was demonstrated, with trees at the edge of the stand being more heavily infested than those at the interior of the stand.
  • 3 The presence of a nonhost broadleaved hedgerow in front of the edge of the pine stand resulted in lower T. pityocampa infestation. There were significantly fewer T. pityocampa nests behind the hedgerow than on the exposed part of the edge. The presence of the hedgerow did not dilute or repel T. pityocampa infestation further into the pine stand, although it decreased the infestation of T. pityocampa throughout the pine stand. The decrease in T. pityocampa infestation behind the hedgerow was greater when the broadleaved hedgerow was taller than the pine trees.
  • 4 These results highlight the benefits of using nonhost tree species on the edge of monospecific forest stands to reduce insect damage. This approach could be promoted as an innovative forest pest management method.
  相似文献   
17.
Sonic hedgehog (SHH) is a regulator of forebrain development that acts through its receptor, patched 1. However, little is known about cellular mechanisms at neurulation, whereby SHH from the prechordal plate governs specification of the rostral diencephalon ventral midline (RDVM), a major forebrain organizer. We identified LRP2, a member of the LDL receptor gene family, as a component of the SHH signaling machinery in the RDVM. LRP2 acts as an apical SHH-binding protein that sequesters SHH in its target field and controls internalization and cellular trafficking of SHH/patched 1 complexes. Lack of LRP2 in mice and in cephalic explants results in failure to respond to SHH, despite functional expression of patched 1 and smoothened, whereas overexpression of LRP2 variants in cells increases SHH signaling capacity. Our data identify a critical role for LRP2 in SHH signaling and reveal the molecular mechanism underlying forebrain anomalies in mice and patients with Lrp2 defects.  相似文献   
18.
19.
20.
Chlorophyll is synthesized from activated glutamate in the tetrapyrrole biosynthesis pathway through at least 20 different enzymatic reactions. Among these, the MgProto monomethylester (MgProtoME) cyclase catalyzes the formation of a fifth isocyclic ring to tetrapyrroles to form protochlorophyllide. The enzyme consists of two proteins. The CHL27 protein is proposed to be the catalytic component, while LCAA/YCF54 likely acts as a scaffolding factor. In comparison to other reactions of chlorophyll biosynthesis, this enzymatic step lacks clear elucidation and it is hardly understood, how electrons are delivered for the NADPH‐dependent cyclization reaction. The present study intends to elucidate more precisely the role of LCAA/YCF54. Transgenic Arabidopsis lines with inactivated and overexpressed YCF54 reveal the mutual stability of YCF54 and CHL27. Among the YCF54‐interacting proteins, the plastidal ferredoxin‐NADPH reductase (FNR) was identified. We showed in N. tabacum and A. thaliana that a deficit of FNR1 or YCF54 caused MgProtoME accumulation, the substrate of the cyclase, and destabilization of the cyclase subunits. It is proposed that FNR serves as a potential donor for electrons required in the cyclase reaction and connects chlorophyll synthesis with photosynthetic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号