首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   5篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   14篇
  2011年   13篇
  2010年   3篇
  2009年   6篇
  2008年   6篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   7篇
  2003年   8篇
  2002年   6篇
  1999年   2篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1980年   1篇
  1979年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
31.
32.
Parental microglial induced neuroinflammation, triggered by bacterial- or viral infections, can induce neuropsychiatric disorders like schizophrenia and autism to offspring in animal models. Recent investigations suggest that microglia, the resident immune cells of the brain, provides a link between neurotransmission, immune cell activation, brain inflammation and neuronal dysfunction seen with the offspring. Relatively little is known about how reduction of brain inflammation and restoration of glial function are associated with diminution of brain degeneration and behavioral deficits in offspring. Increased mGluR5 expression and the long-lasting excitotoxic effects of the neurotoxin during brain development are associated with the glial dysfunctions. We investigated the relationship of mGluR5 and PBR and how they regulate glial function and inflammatory processes in mice prenatally exposed to LPS (120μg/kg, between gestational days 15 and 17), an inflammatory model of a psychiatric disorder. Using PET imaging, we showed that pharmacological activation of mGluR5 during 5 weeks reduced expression of classic inflammation marker PBR in many brain areas and that this molecular association was not present in LPS-exposed offspring. The post-mortem analysis revealed that the down regulation of PBR was mediated through activation of mGluR5 in astrocytes. In addition, we demonstrated that this interaction is defective in a mouse model of the psychiatric deficit offering a novel insight of mGluR5 involvement to brain related disorders and PBR related imaging studies. In conclusion, mGluR5 driven glutamatergic activity regulates astrocytic functions associated with PBR (cholesterol transport, neurosteroidogenesis, glial phenotype) during maturation and could be associated with neuropsychiatric disorders in offspring.  相似文献   
33.
In this study, we investigated the role of reduced glutathione (GSH) and nuclear factor-kappaB (NFkappaB) in hypoxia-induced apoptosis. Hypoxia caused p53-dependent apoptosis in murine embryonic fibroblasts transfected with Ras and E1A. N-Acetyl-l-cysteine (NAC) but not other antioxidants, such as the vitamin E analog trolox and epigallocatechin-3-gallate, enhanced hypoxia-induced caspase-3 activation and apoptosis. NAC also enhanced hypoxia-induced apoptosis in two human cancer cell lines, MIA PaCa-2 pancreatic cancer cells and A549 lung carcinoma cells. In murine embryonic fibroblasts, all three antioxidants blocked hypoxia-induced reactive oxygen species formation. NAC did not enhance hypoxia-induced cytochrome c release but did enhance poly-(ADP ribose) polymerase cleavage, indicating that NAC acted at a post-mitochondrial level. NAC-mediated enhancement of apoptosis was mimicked by incubating cells with GSH monoester, which increased intracellular GSH similarly to NAC. Hypoxia promoted degradation of an inhibitor of kappaB(IkappaBalpha), NFkappaB-p65 translocation into the nucleus, NFkappaB binding to DNA, and subsequent transactivation of NFkappaB, which increased X chromosome-linked inhibitor of apoptosis protein levels. NAC failed to block degradation by IkappaBalpha and sequestration of the p65 subunit of NFkappaB to the nucleus. However, NAC did abrogate hypoxia-induced NFkappaB binding to DNA, NFkappaB-dependent gene expression, and induction of X chromosome-linked inhibitor of apoptosis protein. In conclusion, NAC enhanced hypoxic apoptosis by a mechanism apparently involving GSH-dependent suppression of NFkappaB transactivation.  相似文献   
34.
After simple respiratory inhibition, glycolytic substrates prevent cell death by providing an alternate source of cellular ATP. When mitochondrial uncoupling ensues, the uncoupler-stimulated mitochondrial ATPase hydrolyzes ATP formed by glycolysis and protection is lost. Electron transfer components abnormally reduced by respiratory inhibition, especially ubisemiquinone, react directly with oxygen to form toxic radicals. Mitochondria also generate reactive oxygen species after exposure to oxidant chemicals. A consequence is onset of the mitochondrial permeability transition, which leads to uncoupling, cellular ATP depletion and loss of viability. Thus, mitochondria are both a source and a target of toxic oxygen radicals in cell injury.  相似文献   
35.
36.
Dysregulation of Ca2+ has long been implicated to be important in cell injury. A Ca2+-linked process important in necrosis and apoptosis (or necrapoptosis) is the mitochondrial permeability transition (MPT). In the MPT, large conductance permeability transition (PT) pores open that make the mitochondrial inner membrane abruptly permeable to solutes up to 1500 Da. The importance of Ca2+ in MPT induction varies with circumstance. Ca2+ overload is sufficient to induce the MPT. By contrast after ischemia-reperfusion to cardiac myocytes, Ca2+ overload is the consequence of bioenergetic failure after the MPT rather than its cause. In other models, such as cytotoxicity from Reye-related agents and storage-reperfusion injury to liver grafts, Ca2+ appears to be permissive to MPT onset. Lastly in oxidative stress, increased mitochondrial Ca2+ and ROS generation act synergistically to produce the MPT and cell death. Thus, the exact role of Ca2+ for inducing the MPT and cell death depends on the particular biologic setting.  相似文献   
37.
38.
Many polypores are specialized in their requirements for substrate and environment, and they have been suggested to indicate the continuity of coarse woody debris or naturalness of a forest stand. However, the use of polypores as indicators of conservation value is restricted by the temporally limited appearance of annual fruit bodies. We studied whether the species richness of perennial polypores (perennials) can be used to predict the species richness of annual or annual red-listed polypores (annuals). Our data included 1471 separate datasets (sample plots or larger inventoried areas) in different parts of Finland and Russian Karelia, ranging from the southern to northern boreal zone. At the large scale (the whole area) the number of perennials explained about 70% of the variation in the number of annuals, and about 67% in the number of red-listed annuals. A minimum set of 40–60 perennial occurrences gave a reliable estimate on the species richness of annuals, and 60–80 occurrences on the species richness of red-listed annuals. The richness of perennials predicted the richness of annuals and, in particular, richness of red-listed annuals, better than the size of inventoried area. According to our results, perennial polypores can be used as a surrogate for overall polypore species richness in natural and seminatural boreal forests, but the predictive power is weaker in managed forests. In addition, the relationship between the perennial and annual species seems to differ in different vegetation zones, management types and forest types. Due to this variation direct application of the indicator values derived from different vegetation zones and management or forest types are not recommended. Since perennials are easier to identify than annuals, detectable throughout the year, and have much smaller year-to-year variation, their use as an indicator group seems to offer advantages regarding the timing and cost-efficiency of inventories.  相似文献   
39.
The authors explored morningness-eveningness propensity in adults born prematurely at very low birth weight (VLBW; 相似文献   
40.
Photodynamic therapy (PDT) is a promising approach to treat head and neck cancer cells. Here, we investigated whether mitochondrial iron uptake through mitoferrin-2 (Mfrn2) enhanced PDT-induced cell killing. Three human head and neck squamous carcinoma cell lines (UMSCC1, UMSCC14A, and UMSCC22A) were exposed to light and Pc 4, a mitochondria-targeted photosensitizer. The three cell lines responded differently: UMSCC1 and UMSCC14A cells were more resistant, whereas UMSCC22A cells were more sensitive to Pc 4-PDT-induced cell death. In non-erythroid cells, Mfrn2 is an iron transporter in the mitochondrial inner membrane. PDT-sensitive cells expressed higher Mfrn2 mRNA and protein levels compared with PDT-resistant cells. High Mfrn2-expressing cells showed higher rates of mitochondrial Fe2+ uptake compared with low Mfrn2-expressing cells. Bafilomycin, an inhibitor of the vacuolar proton pump of lysosomes and endosomes that causes lysosomal iron release to the cytosol, enhanced PDT-induced cell killing of both resistant and sensitive cells. Iron chelators and the inhibitor of the mitochondrial Ca2+ (and Fe2+) uniporter, Ru360, protected against PDT plus bafilomycin toxicity. Knockdown of Mfrn2 in UMSCC22A cells decreased the rate of mitochondrial Fe2+ uptake and delayed PDT plus bafilomycin-induced mitochondrial depolarization and cell killing. Taken together, the data suggest that lysosomal iron release and Mfrn2-dependent mitochondrial iron uptake act synergistically to induce PDT-mediated and iron-dependent mitochondrial dysfunction and subsequent cell killing. Furthermore, Mfrn2 represents a possible biomarker of sensitivity of head and neck cancers to cell killing after PDT.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号