首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   1篇
  2024年   1篇
  2023年   2篇
  2022年   3篇
  2021年   3篇
  2019年   2篇
  2018年   4篇
  2016年   8篇
  2015年   9篇
  2014年   8篇
  2013年   12篇
  2012年   7篇
  2011年   8篇
  2010年   7篇
  2009年   6篇
  2008年   9篇
  2007年   8篇
  2006年   4篇
  2005年   3篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1990年   1篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
81.
82.
Dendritic cells (DCs) are activated by signaling via pathogen-specific receptors or exposure to inflammatory mediators. Here we show that co-culturing DCs with apoptotic HIV-infected activated CD4(+) T cells (ApoInf) or apoptotic uninfected activated CD4(+) T cells (ApoAct) induced expression of co-stimulatory molecules and cytokine release. In addition, we measured a reduced HIV infection rate in DCs after co-culture with ApoAct. A prerequisite for reduced HIV infection in DCs was activation of CD4(+) T cells before apoptosis induction. DCs exposed to ApoAct or ApoInf secreted MIP-1α, MIP-1β, MCP-1, and TNF-α; this effect was retained in the presence of exogenous HIV. The ApoAct-mediated induction of co-stimulatory CD86 molecules and reduction of HIV infection in DCs were partially abrogated after blocking TNF-α using monoclonal antibodies. APOBEC3G expression in DCs was increased in co-cultures of DCs and ApoAct but not by apoptotic resting CD4(+) T cells (ApoRest). Silencing of APOBEC3G in DC abrogated the HIV inhibitory effect mediated by ApoAct. Sequence analyses of an env region revealed significant induction of G-to-A hypermutations in the context of GG or GA dinucleotides in DNA isolated from DCs exposed to HIV and ApoAct. Thus, ApoAct-mediated DC maturation resulted in induction of APOBEC3G that was important for inhibition of HIV-infection in DCs. These findings underscore the complexity of differential DC responses evoked upon interaction with resting as compared with activated dying cells during HIV infection.  相似文献   
83.
FTH_0069 is a previously uncharacterized strongly immunoreactive protein that has been proposed to be a novel virulence factor in Francisella tularensis. Here, the glycan structure modifying two C-terminal peptides of FTH_0069 was identified utilizing high resolution, high mass accuracy mass spectrometry, combined with in-source CID tandem MS experiments. The glycan observed at m/z 1156 was determined to be a hexasaccharide, consisting of two hexoses, three N-acetylhexosamines, and an unknown monosaccharide containing a phosphate group. The monosaccharide sequence of the glycan is tentatively proposed as X-P-HexNAc-HexNAc-Hex-Hex-HexNAc, where X denotes the unknown monosaccharide. The glycan is identical to that of DsbA glycoprotein, as well as to one of the multiple glycan structures modifying the type IV pilin PilA, suggesting a common biosynthetic pathway for the protein modification. Here, we demonstrate that the glycosylation of FTH_0069, DsbA, and PilA was affected in an isogenic mutant with a disrupted wbtDEF gene cluster encoding O-antigen synthesis and in a mutant with a deleted pglA gene encoding pilin oligosaccharyltransferase PglA. Based on our findings, we propose that PglA is involved in both pilin and general F. tularensis protein glycosylation, and we further suggest an inter-relationship between the O-antigen and the glycan synthesis in the early steps in their biosynthetic pathways.  相似文献   
84.
85.
IL-6 has a wide range of biological activities that includes anti- and pro-inflammatory aspects. In this study, we investigated the role of IL-6 in immune responses to the rodent filarial nematode Litomosoides sigmodontis, a model for human filarial infections. IL-6?/? mice had a significantly increased worm burden after natural infection compared with wild type controls at early time points p.i. Given that the worm burden in IL-6?/? mice was already increased at the time point the infective larvae reached the pleural cavity, immune responses that may facilitate the migration from the site of infection (skin) via the lymphatics to the pleural cavity were analysed. Increased vascular permeability may facilitate larval migration, but blocking of histamine receptors had no effect on worm burden and vascular permeability was similar between IL-6?/? mice and wild type controls. In contrast, blocking mast cell degranulation reduced the worm burden in IL-6?/? mice partially, suggesting that release of mast cell-derived mediators improves larval migration to some degree. Protective immune responses within the skin were involved, as bypassing the skin barrier by inoculating infective L3s subcutaneously resulted in a comparable worm recovery in both mouse strains. Analysis of the cellular composition by flow cytometry and PCR array in the skin after exposure to filarial extract or L3s, respectively, indicate that the absence of IL-6 results in a delayed recruitment of neutrophils and macrophages to the site of initial infection. These results demonstrate that IL-6 is essentially involved in protective immune responses within the skin that impair migration of infective L3s.  相似文献   
86.
The enantiomers of cis- and trans-3-(4-propyl-cyclopent-2-enyl) propyl acetate, which are conformationally constrained analogues of (Z)-5-decenyl acetate (1), a sex pheromone component of the turnip moth, Agrotis segetum, have been synthesized and tested using the electrophysiological single-sensillum technique. The analogues mimic a cisoid and transoid conformation of 1, respectively. In addition, the enantiomers of each of the cis- and trans-isomers are conformationally constrained analogues of enantiomeric cisoid and transoid conformations of 1. Thus, the compounds prepared and tested are well suited to investigate the nature of the bioactive conformation of the natural pheromone component 1 and the chiral sense of its interaction with the receptor. Electrophysiological single-sensillum recordings show that the activity of the most active cis-isomer, which has a (1S,4R)-configuration, is more than two orders of magnitude higher than that of the most active trans-isomer. Furthermore, the (1S,4R)-isomer is at least 100 times more active than its enantiomer. These results strongly support a previously proposed cisoid bioactive conformation of 1. Furthermore, the (1S,4R)-configuration of most active stereoisomer identifies the chiral sense of the interaction between the natural pheromone component 1 and its receptor.  相似文献   
87.
88.
Malignant cells display an increased sensitivity towards drugs that reduce the function of the ubiquitin-proteasome system (UPS), which is the primary proteolytic system for destruction of aberrant proteins. Here, we report on the discovery of the bioactivatable compound CBK77, which causes an irreversible collapse of the UPS, accompanied by a general accumulation of ubiquitylated proteins and caspase-dependent cell death. CBK77 caused accumulation of ubiquitin-dependent, but not ubiquitin-independent, reporter substrates of the UPS, suggesting a selective effect on ubiquitin-dependent proteolysis. In a genome-wide CRISPR interference screen, we identified the redox enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) as a critical mediator of CBK77 activity, and further demonstrated its role as the compound bioactivator. Through affinity-based proteomics, we found that CBK77 covalently interacts with ubiquitin. In vitro experiments showed that CBK77-treated ubiquitin conjugates were less susceptible to disassembly by deubiquitylating enzymes. In vivo efficacy of CBK77 was validated by reduced growth of NQO1-proficient human adenocarcinoma cells in nude mice treated with CBK77. This first-in-class NQO1-activatable UPS inhibitor suggests that it may be possible to exploit the intracellular environment in malignant cells for leveraging the impact of compounds that impair the UPS.Subject terms: Ubiquitylation, Screening  相似文献   
89.
90.
The coordinated interplay of cytoskeletal networks critically determines tissue biomechanics and structural integrity. Here, we show that plectin, a major intermediate filament-based cytolinker protein, orchestrates cortical cytoskeletal networks in epithelial sheets to support intercellular junctions. By combining CRISPR/Cas9-based gene editing and pharmacological inhibition, we demonstrate that in an F-actin–dependent context, plectin is essential for the formation of the circumferential keratin rim, organization of radial keratin spokes, and desmosomal patterning. In the absence of plectin-mediated cytoskeletal cross-linking, the aberrant keratin–desmosome (DSM)–network feeds back to the actin cytoskeleton, which results in elevated actomyosin contractility. Also, by complementing a predictive mechanical model with Förster resonance energy transfer–based tension sensors, we provide evidence that in the absence of cytoskeletal cross-linking, major intercellular junctions (adherens junctions and DSMs) are under intrinsically generated tensile stress. Defective cytoarchitecture and tensional disequilibrium result in reduced intercellular cohesion, associated with general destabilization of plectin-deficient sheets upon mechanical stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号