首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   17篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   8篇
  2014年   11篇
  2013年   6篇
  2012年   13篇
  2011年   14篇
  2010年   10篇
  2009年   5篇
  2008年   7篇
  2007年   4篇
  2006年   7篇
  2005年   4篇
  2004年   9篇
  2003年   9篇
  2002年   5篇
  2001年   8篇
  2000年   7篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1993年   2篇
  1992年   4篇
  1991年   8篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   6篇
  1983年   1篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1971年   1篇
排序方式: 共有193条查询结果,搜索用时 406 毫秒
91.
Fibroblast growth factors (FGFs) are master regulators of organogenesis and tissue homeostasis. In this study, we used different combinations of FGF receptor (FGFR)-deficient mice to unravel their functions in the skin. Loss of the IIIb splice variants of FGFR1 and FGFR2 in keratinocytes caused progressive loss of skin appendages, cutaneous inflammation, keratinocyte hyperproliferation, and acanthosis. We identified loss of FGF-induced expression of tight junction components with subsequent deficits in epidermal barrier function as the mechanism underlying the progressive inflammatory skin disease. The defective barrier causes activation of keratinocytes and epidermal γδ T cells, which produce interleukin-1 family member 8 and S100A8/A9 proteins. These cytokines initiate an inflammatory response and induce a double paracrine loop through production of keratinocyte mitogens by dermal cells. Our results identify essential roles for FGFs in the regulation of the epidermal barrier and in the prevention of cutaneous inflammation, and highlight the importance of stromal–epithelial interactions in skin homeostasis and disease.  相似文献   
92.
93.
94.
Ezrin is a membrane-cytoskeleton linker protein that can bind F-actin in its active conformation. Several means of regulation of ezrin's activity have been described including phosphorylation of Thr-567 and binding of L-α-phosphatidylinositol-4,5-bisphosphate (PIP2). However, the relative contributions of these events toward activation of the protein and their potential interdependence are not known. We developed an assay based on solid-supported membranes, to which different ezrin mutants (ezrin T567A (inactive mutant), wild-type, and T567D (active pseudophosphorylated mutant)) were bound, that enabled us to analyze the influence of phosphorylation and PIP2 binding on ezrin's activation state in vitro. The lipid bilayers employed contained either DOGS-NTA-Ni to bind the proteins via an N-terminal His-tag, or PIP2, to which ezrin binds via specific binding sites located in the N-terminal region of the protein. Quantitative analysis of the binding behavior of all three proteins to the two different receptor lipids revealed that all three bind with high affinity and specificity to the two receptor lipids. Fluorescence microscopy on ezrin-decorated solid-supported membranes showed that, dependent on the mode of binding and the phosphorylation state, ezrin is capable of binding actin filaments. A clear synergism between phosphorylation and the receptor lipid PIP2 was observed, suggesting a conformational switch from the dormant to the active, F-actin binding state by recognition of PIP2, which is enhanced by the phosphorylation.  相似文献   
95.
96.
S100P is a novel interaction partner and regulator of IQGAP1   总被引:1,自引:0,他引:1  
Ca(2+)-binding proteins of the S100 family participate in intracellular Ca(2+) signaling by binding to and regulating specific cellular targets in their Ca(2+)-loaded conformation. Because the information on specific cellular targets of different S100 proteins is still limited, we developed an affinity approach that selects for protein targets only binding to the physiologically active dimer of an S100 protein. Using this approach, we here identify IQGAP1 as a novel and dimer-specific target of S100P, a member of the S100 family enriched in the cortical cytoskeleton. The interaction between S100P and IQGAP1 is strictly Ca(2+)-dependent and characterized by a dissociation constant of 0.2 μM. Binding occurs primarily through the IQ domain of IQGAP1 and the first EF hand loop of S100P, thus representing a novel structural principle of S100-target protein interactions. Upon cell stimulation, S100P and IQGAP1 co-localize at or in close proximity to the plasma membrane, and complex formation can be linked to altered signal transduction properties of IQGAP1. Specifically, the EGF-induced tyrosine phosphorylation of IQGAP1 that is thought to function in assembling signaling intermediates at IQGAP1 scaffolds in the subplasmalemmal region is markedly reduced in cells overexpressing S100P but not in cells expressing an S100P mutant deficient in IQGAP1 binding. Furthermore, B-Raf binding to IQGAP1 and MEK1/2 activation occurring downstream of IQGAP1 in EGF-triggered signaling cascades are compromised at elevated S100P levels. Thus, S100P is a novel Ca(2+)-dependent regulator of IQGAP1 that can down-regulate the function of IQGAP1 as a signaling intermediate by direct interaction.  相似文献   
97.
The PAR-3-atypical protein kinase C (aPKC)-PAR-6 complex has been implicated in the development of apicobasal polarity and the formation of tight junctions (TJs) in vertebrate epithelial cells. It is recruited by junctional adhesion molecule A (JAM-A) to primordial junctions where aPKC is activated by Rho family small guanosine triphosphatases. In this paper, we show that aPKC can interact directly with JAM-A in a PAR-3-independent manner. Upon recruitment to primordial junctions, aPKC phosphorylates JAM-A at S285 to promote the maturation of immature cell-cell contacts. In fully polarized cells, S285-phosphorylated JAM-A is localized exclusively at the TJs, and S285 phosphorylation of JAM-A is required for the development of a functional epithelial barrier. Protein phosphatase 2A dephosphorylates JAM-A at S285, suggesting that it antagonizes the activity of aPKC. Expression of nonphosphorylatable JAM-A/S285A interferes with single lumen specification during cyst development in three-dimensional culture. Our data suggest that aPKC phosphorylates JAM-A at S285 to regulate cell-cell contact maturation, TJ formation, and single lumen specification.  相似文献   
98.
We investigated the small-scale habitat use of two grouse species, black grouse (Tetrao tetrix L.) and rock ptarmigan (Lagopus muta helvetica Thienemann) in a study area in the Austrian Central Alps in summer. To build habitat suitability models, we applied multiple logistic regression using presence–absence data from fieldwork as the response variable and a set of habitat characteristics as explanatory variables, respectively. To gain a better understanding of the mechanisms that drive habitat selection, we tested for two-way interaction terms before excluding any variables from the initial variable set. Four explanatory variables significantly contributed to the black grouse model: dwarf shrub cover, dwarf shrub height, patchiness and ant hills. The final model for rock ptarmigan contained three explanatory variables: dwarf shrub cover, rock cover and dwarf shrub height. Most notably, the interaction terms dwarf shrub cover × patchiness in the black grouse model and dwarf shrub cover × dwarf shrub height, rock cover × dwarf shrub height in the rock ptarmigan model point out trade-off mechanisms between food, cover and overview providing features. Thus, our models do not only identify the parameters that mainly drive habitat selection, but also deepen our understanding about the causal relationships between these factors. Therefore, the information gained in this study allows for a deduction of appropriate habitat management strategies and supports conservation efforts of local stakeholders.  相似文献   
99.
The filamentous fungus Aspergillus nidulans carries a single gene for the S-adenosylmethionine (SAM) synthetase SasA, whereas many other organisms possess multiple SAM synthetases. The conserved enzyme catalyzes the reaction of methionine and ATP to the ubiquitous methyl group donor SAM. SAM is the main methyl group donor for methyltransferases to modify DNA, RNA, protein, metabolites, or phospholipid target substrates. We show here that the single A. nidulans SAM synthetase encoding gene sasA is essential. Overexpression of sasA, encoding a predominantly cytoplasmic protein, led to impaired development including only small sterile fruiting bodies which are surrounded by unusually pigmented auxiliary Hülle cells. Hülle cells are the only fungal cell type which does not contain significant amounts of SasA. Sterigmatocystin production is altered when sasA is overexpressed, suggesting defects in coordination of development and secondary metabolism. SasA interacts with various metabolic proteins including methionine or mitochondrial metabolic enzymes as well as proteins involved in fungal morphogenesis. SasA interaction to histone-2B might reflect a putative epigenetic link to gene expression. Our data suggest a distinct role of SasA in coordinating fungal secondary metabolism and development.  相似文献   
100.
A normal structure of the celiac plexus nodes has been studied in 12 mature dogs. As demonstrate the results of the investigation, gangliocytes of the celiac plexus are characterized with a well developed granular cytoplasmic reticulum and a large number of Golgi complexes. In perikaryon of the gangliocytes, an essential number of mitochondria, microtubules, free ribosomes and polysomes, lysosomes, multivesicular bodies, agranular and granular vesicles and neurofilaments are found. The gangliocyte has one nucleus which occupies about 1/3 of the whole area of the cell. The nucleus is rich in chromatin. The nucleolus makes about 1/5 of the whole area of the nucleus and is intensively rich in heterochromatin. In the celiac plexus nodes amyelinated neural fibers predominate. Dendrites in the gangliocytes differ from axons by a higher electron density of their matrix and contain the same organells that does the perikaryon of the gangliocyte. Rather complex glyoneuronal interrelations are observed in the canine celiac plexus nodes. Synapses are revealed in all ganglionar zones. The axodendritic synaptic contacts predominate over the axosomatic ones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号