首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   176篇
  免费   17篇
  2022年   2篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   5篇
  2015年   8篇
  2014年   11篇
  2013年   6篇
  2012年   13篇
  2011年   14篇
  2010年   10篇
  2009年   5篇
  2008年   7篇
  2007年   4篇
  2006年   7篇
  2005年   4篇
  2004年   9篇
  2003年   9篇
  2002年   5篇
  2001年   8篇
  2000年   7篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1993年   2篇
  1992年   4篇
  1991年   8篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   6篇
  1983年   1篇
  1978年   1篇
  1977年   1篇
  1976年   3篇
  1975年   1篇
  1971年   1篇
排序方式: 共有193条查询结果,搜索用时 15 毫秒
121.
Weibel-Palade bodies (WPBs) are secretory organelles of endothelial cells that store the thrombogenic glycoprotein von Willebrand factor (vWF). Endothelial activation, e.g. by histamine and thrombin, triggers the Ca(2+)-dependent exocytosis of WPB that releases vWF into the vasculature and thereby initiates platelet capture and thrombus formation. Towards understanding the molecular mechanisms underlying this regulated WPB exocytosis, we here identify components of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) machinery associated with WPB. We show that vesicle-associated membrane protein (VAMP) 3 and VAMP8 are present on WPB and that VAMP3, but not VAMP8 forms a stable complex with syntaxin 4 and SNAP23, two plasma membrane-associated SNAREs in endothelial cells. By introducing mutant SNARE proteins into permeabilized endothelial cells we also show that soluble VAMP3 but not VAMP8 mutants comprising the cytoplasmic domain interfere with efficient vWF secretion. This indicates that endothelial cells specifically select VAMP 3 over VAMP8 to cooperate with syntaxin 4 and SNAP23 in the Ca(2+)-triggered fusion of WPB with the plasma membrane. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.  相似文献   
122.
123.
Goebeler V  Ruhe D  Gerke V  Rescher U 《FEBS letters》2006,580(10):2430-2434
Annexin A8 is a poorly characterized member of the annexin family of Ca2+-regulated membrane binding proteins. Initially only identified at the cDNA level it had been tentatively linked to acute promyelocytic leukaemia (APL) due to its high and regulated expression in APL-derived cells. Here we identify unique properties of the annexin A8 protein. We show that it binds Ca2+-dependently and with high specificity to phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P2) and is also capable of interacting with F-actin. In line with these characteristics annexin A8 is recruited to F-actin-associated PtdIns(4,5)P2-rich membrane domains formed in HeLa cells upon infection with non-invading enteropathogenic Escherichia coli. These properties suggest a role of annexin A8 in the organization of certain actin-associated membrane domains.  相似文献   
124.
Aromatic aldols and 1,5-diketones with abstractable γ-hydrogen atoms are highly photoactive cage molecules for the release of fragrance carbonyl compounds (aldehydes and Michael ketones, respectively). Aldols 3a-d are easily accessible by Mukaiyama addition and are cleaved to form the substrates with high quantum yields under solar radiation. By tuning the properties of the chromophores, a series of δ-damascone cages 5 were developed that can be used for selective and fast (5a,e) or slow (5b,d) release of fragrances under air and solar irradiation. The intermediates of the Norrish II process were observed by laser transient absorption spectroscopy.  相似文献   
125.
The biogenesis of mitochondrial NADH:ubiquinone oxidoreductase (complex I) requires several assembly chaperones. These so-called complex I assembly factors have emerged as a new class of human disease genes. Here, we identified putative assembly factor homologues in Caenorhabditis elegans. We demonstrate that two candidates (C50B8.3/NUAF-1, homologue of NDUFAF1 and R07H5.3/NUAF-3, homologue of NDUFAF3) clearly affect complex I function. Assembly factor deficient worms were shorter, showed a diminished brood size and displayed reduced fat content. Our results suggest that mitochondrial complex I biogenesis is evolutionarily conserved. Moreover, Caenorhabditis elegans appears to be a promising model organism to study assembly factor related human diseases.  相似文献   
126.
We have utilized a highly sensitive approach based on fluorescence resonance energy transfer (FRET) and β-lactamase (BLA), which we adapted for the detection of Toxoplasma gondii secreted proteins. This assay revealed that the actin-binding protein toxofilin appears to be secreted into host cells during invasion. To determine the function of toxofilin during infection, we engineered a type I (RH strain) parasite with a targeted deletion of the toxofilin gene and compared the phenotypes of control and toxofilin knockout (Δ txf ) parasites in several in vitro assays, including invasion, growth, gliding motility, and egress of the Δ txf parasites, as well as F-actin staining, phagocytosis and migration of cells infected with Δ txf parasites or wild-type controls. Despite its apparent secretion into host cells and its ability to bind to and modulate host actin, we observed that toxofilin does not appear to play a role in these processes, under the conditions we examined, and we report these findings here.  相似文献   
127.
Ezrin is a multidomain protein providing regulated membrane-cytoskeleton contacts that play a role in cell differentiation, adhesion, and migration. Within the cytosol of resting cells ezrin resides in an autoinhibited conformation in which the N- and C-terminal ezrin/radixin/moesin (ERM) association domains (ERMADs) interact with one another. Activation of the ezrin membrane-cytoskeleton linker function requires an opening of this interdomain association that can result from phosphatidylinositol 4,5-bisphosphate binding to the N-ERMAD and threonine 567 phosphorylation in the C-ERMAD. We have shown that ezrin can also be activated by Ca(2+)-dependent binding of the EF-hand protein S100P. We now provide a quantitative analysis of this interaction and map the respective binding sites to the F2 lobe in the ezrin N-ERMAD and a stretch of hydrophobic residues in the C-terminal extension of S100P. Phospholipid binding assays reveal that S100P and phosphatidylinositol 4,5-bisphosphate compete to some extent for at least partially overlapping binding sites in N-ERMAD. Using interaction-competent as well as interaction-incompetent S100P derivatives and permanently active ezrin mutants, we also show that the protein interaction and a resulting activation of ezrin promote the transendothelial migration of tumor cells. Thus, a prometastatic role of ezrin and S100P that had been proposed based on their overexpression in highly metastatic cancers is probably due to a direct interaction between the two proteins and the S100P-mediated activation of ezrin.  相似文献   
128.
The Ca2+ and membrane binding protein annexin 2 can form a heterotetrameric complex with the S100A10 protein and this complex is thought to serve a bridging or scaffolding function in the membrane underlying cytoskeleton. To elucidate which of the subunits targets the complex to the subplasmalemmal region in live cells we employed YFP/CFP fusion proteins and live cell imaging in HepG2 cells. We show that monomeric annexin 2 is targeted to the plasma membrane whereas non-complexed S100A10 acquires a general cytosolic distribution. Co-expression of S100A10 together with annexin 2 and the resulting complex formation, however, lead to a recruitment of S100A10 to the plasma membrane thus identifying annexin 2 as the membrane targeting subunit.  相似文献   
129.
S100-annexin complexes: some insights from structural studies   总被引:7,自引:0,他引:7  
Several annexins have been shown to bind proteins that belong to the S100 calcium-binding protein family. The two best-characterized complexes are annexin II with p11 and annexin I with S100C, the former of which has been implicated in membrane fusion processes. We have solved the crystal structures of the complexes of p11 with annexin II N-terminus and of S100C with annexin I N-terminus. Using these structural results, as well as electron microscopy observations of liposome junctions formed in the presence of such complexes (Lambert et al., 1997 J Mol Biol 272, 42-55), we propose a computer generated model for the entire annexin II/p11 complex.  相似文献   
130.
Phosphorylation of the Ca2+ and membrane-binding protein annexin 1 by epidermal growth factor (EGF) receptor tyrosine kinase has been thought to be involved in regulation of the EGF receptor trafficking. To elucidate the interaction of annexin 1 during EGF receptor internalization, we followed the distribution of annexin 1-GFP fusion proteins at sites of internalizing EGF receptors. The observed association of annexin 1 with EGF receptors was confirmed by immunoprecipitation. We found that this interaction was independent of a functional phosphorylation site in the annexin 1 N-terminal domain but mediated through the Ca2+ binding core domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号