首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   231篇
  免费   25篇
  256篇
  2021年   1篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   7篇
  2015年   5篇
  2014年   3篇
  2013年   3篇
  2012年   17篇
  2011年   9篇
  2010年   8篇
  2009年   11篇
  2008年   7篇
  2007年   2篇
  2006年   8篇
  2005年   5篇
  2004年   9篇
  2003年   6篇
  2002年   7篇
  2001年   6篇
  2000年   5篇
  1999年   5篇
  1998年   5篇
  1997年   6篇
  1996年   9篇
  1995年   12篇
  1994年   6篇
  1993年   8篇
  1992年   6篇
  1991年   7篇
  1990年   5篇
  1989年   11篇
  1988年   4篇
  1987年   7篇
  1986年   5篇
  1985年   1篇
  1984年   4篇
  1983年   5篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1972年   2篇
  1969年   1篇
  1967年   2篇
排序方式: 共有256条查询结果,搜索用时 15 毫秒
61.
Barbara van Cleve  Klaus Apel 《Planta》1993,189(1):157-160
The synthesis of storage proteins in trees of poplar (Populus x canadensis Moench) could not only be induced by a shift from long-day to short-day conditions but also by either a low-temperature treatment or by nitrogen feeding under continuous long-day conditions. The synthesis of the protein did not depend on the cessation of growth and the formation of a terminal bud. The accumulation of the storage protein was in all cases preceded by a drastic increase in the level of the corresponding mRNA.Abbreviations cDNA copy DNA - kDA kilodalton  相似文献   
62.
63.
MtfA of Escherichia coli (formerly YeeI) was previously identified as a regulator of the phosphoenolpyruvate (PEP)-dependent:glucose phosphotransferase system. MtfA homolog proteins are highly conserved, especially among beta- and gammaproteobacteria. We determined the crystal structures of the full-length MtfA apoenzyme from Klebsiella pneumoniae and its complex with zinc (holoenzyme) at 2.2 and 1.95 Å, respectively. MtfA contains a conserved H149E150XXH153+E212+Y205 metallopeptidase motif. The presence of zinc in the active site induces significant conformational changes in the region around Tyr205 compared to the conformation of the apoenzyme. Additionally, the zinc-bound MtfA structure is in a self-inhibitory conformation where a region that was disordered in the unliganded structure is now observed in the active site and a nonproductive state of the enzyme is formed. MtfA is related to the catalytic domain of the anthrax lethal factor and the Mop protein involved in the virulence of Vibrio cholerae, with conservation in both overall structure and in the residues around the active site. These results clearly provide support for MtfA as a prototypical zinc metallopeptidase (gluzincin clan).  相似文献   
64.
Recently the porA-1 null mutant of Arabidopsis thaliana has been identified, which contains an insertion of the Dissociation (Ds) element in the PORA gene (Paddock et al. in Plant Mol Biol 78:447-460, 2012). Light-grown porA-1 seedlings suffer from a drastically reduced chlorophyll content and a developmental arrest beyond the cotyledon stage, suggesting that PORA is not only transiently involved in initiating chlorophyll synthesis during illumination of etiolated seedlings but is also essential for normal growth and plant development. Here we report the presence of a second Ds element in this porA-1 mutant line that inactivates the Speechless gene required for stomata formation. Similar to porA-1, speechless seedlings are severely impaired in their development. Our results suggest that the lack of stomata in porA-1 may contribute to the dwarfed phenotype of the mutant and thus emphasizes the need to re-address the proposed role of PORA during plant development by studying a porA mutant that retains its stomata formation.  相似文献   
65.
During skotomorphogenesis in angiosperms, NADPH:protochlorophyllide oxidoreductase (POR) forms an aggregate of photolabile NADPH-POR-protochlorophyllide (Pchlide) ternary complexes localized to the prolamellar bodies within etioplasts. During photomorphogenesis, POR catalyzes the light-dependent reduction of Pchlide a to chlorophyllide (Chlide) a, which is subsequently converted to chlorophyll (Chl). In Arabidopsis there are three structurally related POR genes, denoted PORA, PORB and PORC. The PORA and PORB proteins accumulate during skotomorphogenesis. During illumination, PORA is only transiently expressed, whereas PORB and PORC persist and are responsible for bulk Chl synthesis throughout plant development. Here we have tested whether PORA is important for skotomorphogenesis by assisting in etioplast development, and normal photomorphogenic development. Using reverse genetic approaches, we have identified the porA-1 null mutant, which contains an insertion of the maize Dissociation transposable element in the PORA gene. Additionally, we have characterized PORA RNAi lines. The porA-1 and PORA RNAi lines display severe photoautotrophic growth defects, which can be partially rescued on sucrose-supplemented growth media. Elimination of PORA during skotomorphogenesis results in reductions in the volume and frequency of prolamellar bodies, and in photoactive Pchlide conversion. The porA-1 mutant characterization thus establishes a quantitative requirement for PORA in etioplast development by demonstrating significant membrane ultrastructural and biochemical defects, in addition to suggesting PORA-specific functions in photomorphogenesis and plant development.  相似文献   
66.
Enhanced levels of singlet oxygen ((1)O(2)) in chloroplasts trigger programmed cell death. The impact of (1)O(2) production in chloroplasts was monitored first in the conditional fluorescent (flu) mutant of Arabidopsis thaliana that accumulates (1)O(2) upon a dark/light shift. The onset of (1)O(2) production is rapidly followed by a loss of chloroplast integrity that precedes the rupture of the central vacuole and the final collapse of the cell. Inactivation of the two plastid proteins EXECUTER (EX1) and EX2 in the flu mutant abrogates these responses, indicating that disintegration of chloroplasts is due to EX-dependent signaling rather than (1)O(2) directly. In flu seedlings, (1)O(2)-mediated cell death signaling operates as a default pathway that results in seedlings committing suicide. By contrast, EX-dependent signaling in the wild type induces the formation of microlesions without decreasing the viability of seedlings. (1)O(2)-mediated and EX-dependent loss of plastid integrity and cell death in these plants occurs only in cells containing fully developed chloroplasts. Our findings support an as yet unreported signaling role of (1)O(2) in the wild type exposed to mild light stress that invokes photoinhibition of photosystem II without causing photooxidative damage of the plant.  相似文献   
67.
Precipitation of CaCO3 catalyzed by the growth and physiology of cyanobacteria in the genus Synechococcus represents a potential mechanism for sequestration of atmospheric CO2 produced during the burning of coal for power generation. Synechococcus sp. strain PCC 8806 and Synechococcus sp. strain PCC 8807 were tested in microcosm experiments for their ability to calcify when exposed to a fixed calcium concentration of 3.4 mM and dissolved inorganic carbon concentrations of 0.5, 1.25 and 2.5 mM. Synechococcus sp. strain PCC 8806 removed calcium continuously over the duration of the experiment producing approximately 18.6 mg of solid phase calcium. Calcium removal occurred over a two-day time period when Synechococcus sp. strain PCC 8807 was tested and only 8.9 mg of solid phase calcium was produced. Creation of an alkaline growth environment catalyzed by the physiology of the cyanobacteria appeared to be the primary factor responsible for CaCO3 precipitation in these experiments.  相似文献   
68.
Carotenoids are essential pigments of the photosynthetic apparatus and an indispensable component of the human diet. In addition to being potent antioxidants, they also provide the vitamin A precursor β-carotene. In tomato (Solanum lycopersicum) fruits, carotenoids accumulate in specialized plastids, the chromoplasts. How the carotenoid biosynthetic pathway is regulated and what limits total carotenoid accumulation in fruit chromoplasts is not well understood. Here, we have introduced the lycopene β-cyclase genes from the eubacterium Erwinia herbicola and the higher plant daffodil (Narcissus pseudonarcissus) into the tomato plastid genome. While expression of the bacterial enzyme did not strongly alter carotenoid composition, expression of the plant enzyme efficiently converted lycopene, the major storage carotenoid of the tomato fruit, into provitamin A (β-carotene). In green leaves of the transplastomic tomato plants, more lycopene was channeled into the β-branch of carotenoid biosynthesis, resulting in increased accumulation of xanthophyll cycle pigments and correspondingly reduced accumulation of the α-branch xanthophyll lutein. In fruits, most of the lycopene was converted into β-carotene with provitamin A levels reaching 1 mg per g dry weight. Unexpectedly, transplastomic tomatoes also showed a >50% increase in total carotenoid accumulation, indicating that lycopene β-cyclase expression enhanced the flux through the pathway in chromoplasts. Our results provide new insights into the regulation of carotenoid biosynthesis and demonstrate the potential of plastids genome engineering for the nutritional enhancement of food crops.Carotenoids are isoprenoid molecules that are synthesized by all photosynthetic organisms and also by some fungi and nonphotosynthetic bacteria. In plants, they participate in photosynthetic light harvesting and protection against light stress. In addition, carotenoids accumulate to large levels as storage metabolites in chromoplasts of flowers, fruits, and taproots. Carotenoids are also essential to animals, which, however, are unable to synthesize them de novo, and therefore must rely on dietary sources of carotenoids. β-Carotene is the main dietary precursor of vitamin A and therefore also referred to as provitamin A. Vitamin A deficiency in humans represents a global health problem affecting approximately one-third of the countries of the world (Mayer et al., 2008). Presumably due to their antioxidant activity, β-carotene and other carotenoid species also exert protective effects against cardiovascular diseases, certain cancers, and aging-related diseases (Collins, 1999).While the enzymology of the carotenoid biosynthetic pathways in plants and eubacteria is now reasonably well understood (Armstrong, 1997; Cunningham and Gantt, 1998; Hirschberg, 2001), understanding of the regulation of carotenoid biosynthesis is still rather poor (Bramley, 2002). Mainly using the tomato (Solanum lycopersicum) fruit as model system, the study of pigmentation mutants (Ronen et al., 2000; Isaacson et al., 2002; Galpaz et al., 2006) and transgenic approaches (Giuliano et al., 2000, 2008; Römer and Fraser, 2005; Fraser et al., 2007) have provided first insights into regulatory mechanisms operating in carotenogenesis. For example, constitutive expression of the phytoene desaturase (crtI) gene from the bacterium Erwinia uredovora resulted in elevated β-carotene accumulation in tomatoes, but also led to an unexpected reduction in total carotenoid levels (Römer et al., 2000). The reduction in total carotenoids is believed to be an effect of feedback regulation from β-carotene or one of its downstream metabolites (Bramley, 2002). However, fruit-specific overexpression of the native lycopene β-cyclase resulted in increased β-carotene accumulation, without a concomitant decrease in total carotenoids (Rosati et al., 2000). Why some genetic disturbances of carotenoid biosynthesis negatively affect total carotenoid accumulation and others do not (or even result in an increase; Dharmapuri et al., 2002; Fraser et al., 2002), remains to be established.Here we have used tomato plastid transformation to address the regulation of carotenoid biosynthesis exerted at the level of lycopene to β-carotene conversion by the enzyme lycopene β-cyclase (Fig. 1A). We show that plastid expression of a plant lycopene β-cyclase does not only trigger efficient conversion of lycopene to β-carotene, but unexpectedly also results in a >50% increase in total carotenoid accumulation. This contrasts moderately increased β-carotene levels and reduced total carotenoid accumulation upon expression of a bacterial lycopene β-cyclase (Wurbs et al., 2007) and suggests lycopene β-cyclase activity as an important regulatory point in plant and microbial carotenoid biosynthesis.Open in a separate windowFigure 1.Engineering of the carotenoid biosynthetic pathway by plastid transformation. A, Carotenoid biosynthetic pathway in higher plants. The pathway splits into an α-branch and a β-branch immediately downstream of lycopene, the major storage carotenoid of tomato fruits. The enzyme expressed from the tomato plastid genome in this study, lycopene β-cyclase, leads into the β-branch. B, Physical maps of the targeting region in the plastid genome (ptDNA) and the plastid transformation vectors pEcrtY and pNLyc constructed in this study. Genes above the line are transcribed from the left to the right, genes below the line are transcribed in the opposite direction. The transgenes are targeted to the intergenic region between the trnfM and trnfG genes (Ruf et al., 2001). The selectable marker gene aadA is driven by a chimeric rRNA operon promoter (Prrn; Svab and Maliga, 1993), fused to the 3′-UTR from the psbA gene (TpsbA), and flanked by two loxP sites to allow marker removal by Cre-mediated site-specific recombination (Zhou et al., 2008). The transgene expression cassette consists of the ribosomal RNA operon promoter fused to the 5′ leader from the gene 10 of phage T7 (Prrn-G10L; Kuroda and Maliga, 2001) and the 3′-UTR of the rps16 gene (Trps16). Restriction sites used for cloning or RFLP analysis are indicated, and the psaB-derived hybridization probe is denoted by a horizontal bar. Sites lost due to ligation to heterologous ends are in parentheses. C, Southern-blot analysis of tomato transplastomic lines carrying the lycopene β-cyclase gene from daffodil (S.l.-pNLyc) or from E. herbicola (S.l.-pEcrtY). Total cellular DNA was digested with BglII and hybridized to a radioactively labeled probe detecting the psaB region of the plastid genome, which flanks the transgene insertion site (section B). Fragment sizes are given in kb. wt, Wild type. D, Alignment (produced with ClustalW2) of the amino acid sequences of the lycopin β-cyclases from daffodil (Np) and E. herbicola (Eh). Asterisk (*) denotes residues identical in both sequences (marked in bold), colon (:) indicates conserved substitutions, and a dot indicates semiconserved substitutions. The N-terminal extension of the Np sequence is likely to harbor the transit peptide for protein import into plastids. The amino acids that changed due to correction of the Lyc sequence from daffodil (published sequence: GenBank accession no. X98796.1; corrected sequence: accession no. GQ327929) are underlined. The corrections improve the sequence similarity in the N-terminal domains of the Np and Eh sequences.  相似文献   
69.
Shortly after the release of singlet oxygen (1O2) in chloroplasts drastic changes in nuclear gene expression occur in the conditional flu mutant of Arabidopsis that reveal a rapid transfer of signals from the plastid to the nucleus. Factors involved in this retrograde signaling were identified by mutagenizing a transgenic flu line expressing a 1O2-responsive reporter gene. The reporter gene consisted of the luciferase open reading frame and the promoter of an AAA-ATPase gene (At3g28580) that was selectively activated by 1O2 but not by superoxide or hydrogen peroxide. A total of eight second-site mutants were identified that either constitutively activate the reporter gene and the endogenous AAA-ATPase irrespectively of whether 1O2 was generated or not (constitutive activators of AAA-ATPase, caa) or abrogated the 1O2-dependent up-regulation of these genes as seen in the transgenic parental flu line (non-activators of AAA-ATPase, naa). The characterization of the mutants strongly suggests that 1O2-signaling does not operate as an isolated linear pathway but rather forms an integral part of a signaling network that is modified by other signaling routes and impacts not only stress responses of plants but also their development. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Aiswarya Baruah and Klára Šimková contributed equally to the article.  相似文献   
70.
In the present study we analyzed the combined effects of management (grazing, mowing, prescribed burning, sod-cutting) and atmospheric deposition on N and P budgets of heathland ecosystems (Lüneburger Heide nature reserve; N Germany). We hypothesize that management measures such as grazing and mowing can accelerate a deposition-induced imbalance of N and P pools as a result of a disproportionally high output of P. We analyzed management and deposition affected input–output flows of N and P and related them to changes in the nutritional status of Calluna vulgaris 5 years after treatment application. We found that grazing and mowing caused the highest net loss of P due to high P concentrations in the aboveground biomass. In contrast, prescribed burning only slightly affected P pools, as P remained in the system due to ash deposition. Management-mediated effects on N and P pools were mirrored in the nutritional status of Calluna vulgaris: at the grazed and mown sites, the P content of current season’s shoots significantly decreased within 5 years after treatments, whereas the N content remained unchanged. We conclude that grazing and mowing can accelerate declining availability of P and, thus, accelerate a deposition-induced shift from N- to P-limited plant growth in the medium term. In the face of ongoing atmospheric N loads management schemes need to combine high- and low-intensity measures to maintain both a diverse structure and balanced nutrient budgets in the long term.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号