首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22178篇
  免费   1518篇
  国内免费   9篇
  23705篇
  2023年   128篇
  2022年   313篇
  2021年   587篇
  2020年   353篇
  2019年   478篇
  2018年   596篇
  2017年   480篇
  2016年   812篇
  2015年   1222篇
  2014年   1344篇
  2013年   1676篇
  2012年   1961篇
  2011年   1901篇
  2010年   1178篇
  2009年   1024篇
  2008年   1387篇
  2007年   1301篇
  2006年   1192篇
  2005年   1090篇
  2004年   991篇
  2003年   933篇
  2002年   756篇
  2001年   124篇
  2000年   114篇
  1999年   142篇
  1998年   131篇
  1997年   116篇
  1996年   95篇
  1995年   89篇
  1994年   93篇
  1993年   90篇
  1992年   57篇
  1991年   61篇
  1990年   69篇
  1989年   48篇
  1988年   55篇
  1987年   44篇
  1986年   44篇
  1985年   60篇
  1984年   43篇
  1983年   48篇
  1982年   34篇
  1981年   45篇
  1980年   28篇
  1979年   34篇
  1978年   36篇
  1977年   32篇
  1976年   25篇
  1975年   25篇
  1973年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
HvHMA2 is a plasma membrane P1B-ATPase from barley that functions in Zn/Cd root-to-shoot transport. To assess the usefulness of HvHMA2 for modifying the metal content in aerial plant parts, it was expressed in tobacco under the CaMV35S promoter. Transformation with HvHMA2 did not produce one unique pattern of Zn and Cd accumulation; instead it depended on external metal supply. Thus Zn and Cd root-to-shoot translocation was facilitated, but not at all applied Zn/Cd concentrations. Metal uptake was restricted in HvHMA2-transformed plants and the level in the shoot was not enhanced. It was shown that HvHMA2 localizes to the plasma membrane of tobacco cells, and overloads the apoplast with Zn, which could explain the overall decrease in metal uptake observed. Despite the lower levels in the shoot, HvHMA2 transformants showed increased Zn sensitivity. Moreover, introduction of HvHMA2 into tobacco interfered with Fe metabolism and Fe accumulation was modified in HvHMA2-transformants in a Zn- and Cd-concentration dependent manner. The results indicate that ectopic expression of the export protein HvHMA2 in tobacco interferes with tobacco metal Zn–Cd–Fe cross-homeostasis, inducing internal mechanisms regulating metal uptake and tolerance.  相似文献   
162.
The general function of the ubiquitylation systems is to conjugate ubiquitin to lysine residues within substrate proteins, thus targeting them for degradation by the proteasome. In Arabidopsis thaliana more than 1300 genes (approximately 5% of the proteome) encode components of the ubiquitin/26S proteasome pathway. Approximately 90% of these genes encode subunits of the E3 ubiquitin ligases, which confer substrate specificity to the ubiquitin/26S proteasome pathway. The plant E3 ubiquitin ligases comprise a large and diverse family of proteins or protein complexes containing either a HECT domain, a RING-finger or U-box domain. The SCF class of E3 ligases is the most thoroughly studied in plants because some of them participate in regulation of hormone signaling pathways. The role of the SCF is to ubiquitylate repressors of hormone response (auxin, gibberellins), whereas in response to ethylene, abscisic acid and brassinosteroids the SCF participate in degradation of positive regulators in the absence of the hormone.  相似文献   
163.
164.
165.

Background  

The potyviruses sugarcane mosaic virus (SCMV) and maize dwarf mosaic virus (MDMV) are major pathogens of maize worldwide. Two loci, Scmv1 and Scmv2, have ealier been shown to confer complete resistance to SCMV. Custom-made microarrays containing previously identified SCMV resistance candidate genes and resistance gene analogs were utilised to investigate and validate gene expression and expression patterns of isogenic lines under pathogen infection in order to obtain information about the molecular mechanisms involved in maize-potyvirus interactions.  相似文献   
166.
The Upper Rhine Valley, a “hotspot of biodiversity” in Germany, has been treated with the biocide Bacillus thuringiensis var. israelensis (Bti) for mosquito control for decades. Previous studies discovered Bti nontarget effects in terms of severe chironomid abundance reductions. In this study, we investigated the impact of Bti on species level and addressed the community composition of the nontarget family Chironomidae by use of community metabarcoding. Chironomid emergence data were collected in three mosquito‐control relevant wetland types in the Upper Rhine Valley. For all three sites the chironomid species composition, based on operational taxonomic units (OTUs), was different to varying degrees in the Bti‐treated samples versus control samples, ranging from a significant 63% OTU reduction to an OTU replacement. We assumed that predatory chironomids are less prone to Bti than filter feeders, as the latter feed on floating particles leading to direct ingestion of Bti. However, a comparable percentage of predators and filter feeders (63% and 65%, respectively) was reduced in the Bti samples, suggesting that the feeding strategy is not the main driver for Bti sensitivity in chironomids. Finally, our data was compared to a three‐year‐old data set, indicating possible chironomid community recovery due to species recolonization a few years after the last Bti application. Considering the currently discussed worldwide insect decline we recommend a rethinking of the usage of the biocide Bti, and to prevent its ongoing application especially in nature protection reserves to enhance ecological resilience and to prevent boosting the current biodiversity loss.  相似文献   
167.
168.
Phosphorus (P) is an important nutrient in tundra ecosystems that co-limits or in some cases limits primary production. The availability of P is largely driven by soil characteristics, e.g., pH, organic carbon, and abundance of P-sorbing elements such as aluminium (Al) or iron (Fe). We tested how vegetation and soil properties relate to P availability across different tundra vegetation types. The different soil P fractions in the organic horizon were measured and plant foliar nitrogen (N) to P ratio and a plant bioassay was used as indicators of plant nutrient status. Microbial bioassays were used to study microbial respiration kinetics and in response to carbon, N, and P amendments. The distribution of P fractions differed significantly across vegetation types; labile fractions of P were less abundant in meadow sites compared to heath sites. Calcium-phosphates seemed to be an important P-fraction in meadows, but were only found in lower concentrations in the heath. There were only small differences in NaOH–extractable P between the vegetation types and this correlated with the distribution of oxalate-extractable Al. Plant N:P ratios and the plant bioassay indicated decreasing P availability from dry heath to mesic heath to mesic meadow. The microbial bioassay suggests that the heterotrophic microbial community is C-limited with N as a secondary limiting nutrient although there were indications that microbial P availability was lower in the meadow sites. Overall, we suggest that the observed variations in soil P across vegetation types are affecting both plant and microbial function although the differences seem to be relatively small.  相似文献   
169.
The low-frequency dynamics of plastocyanin, an electron transfer copper protein, has been investigated by incoherent neutron scattering at different temperatures. The contribution to the dynamic structure factor arising from H/D exchangeable and non-exchangeable protein protons has been evaluated by analyzing two differently exchanged protein samples. The dynamic structure factor of a hydrated plastocyanin sample with all the exchangeable hydrogens (about 150) replaced by deuterium exhibits an excess of vibrational modes, at about 3.5 meV, reminiscent of the boson peak found in other proteins and glassy systems. When only fast exchangeable hydrogens (about 50) are substituted by deuterium, the protein, besides the above-mentioned peak, shows an additional peak at about 1 meV. These vibrational peaks are discussed in connection with the topological disorder of the systems and the fluctuations of the intramolecular hydrogen bonds.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号