首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22340篇
  免费   1525篇
  国内免费   9篇
  23874篇
  2024年   19篇
  2023年   127篇
  2022年   314篇
  2021年   590篇
  2020年   361篇
  2019年   480篇
  2018年   605篇
  2017年   489篇
  2016年   822篇
  2015年   1247篇
  2014年   1372篇
  2013年   1692篇
  2012年   1981篇
  2011年   1928篇
  2010年   1208篇
  2009年   1040篇
  2008年   1407篇
  2007年   1316篇
  2006年   1195篇
  2005年   1097篇
  2004年   1000篇
  2003年   939篇
  2002年   761篇
  2001年   125篇
  2000年   108篇
  1999年   141篇
  1998年   128篇
  1997年   116篇
  1996年   89篇
  1995年   86篇
  1994年   90篇
  1993年   88篇
  1992年   53篇
  1991年   58篇
  1990年   62篇
  1989年   46篇
  1988年   51篇
  1987年   38篇
  1986年   42篇
  1985年   51篇
  1984年   39篇
  1983年   44篇
  1982年   32篇
  1981年   42篇
  1980年   26篇
  1979年   34篇
  1978年   32篇
  1977年   29篇
  1976年   25篇
  1975年   22篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
991.
Rapid spread of resistance to vancomycin has generated difficult to treat bacterial pathogens worldwide. Though vancomycin resistance is often conferred by the conjugative transposon Tn1549, it is yet unclear whether Tn1549 moves actively between bacteria. Here we demonstrate, through development of an in vivo assay system, that a mini‐Tn1549 can transpose in E. coli away from its natural Gram‐positive host. We find the transposon‐encoded INT enzyme and its catalytic tyrosine Y380 to be essential for transposition. A second Tn1549 protein, XIS is important for efficient and accurate transposition. We further show that DNA flanking the left transposon end is critical for excision, with changes to nucleotides 7 and 9 impairing movement. These mutations could be partially compensated for by changing the final nucleotide of the right transposon end, implying concerted excision of the two ends. With changes in these essential DNA sequences, or without XIS, a large amount of flanking DNA transposes with Tn1549. This rescues mobility and allows the transposon to capture and transfer flanking genomic DNA. We further identify the transposon integration target sites as TTTT‐N6‐AAAA. Overall, our results provide molecular insights into conjugative transposition and the adaptability of Tn1549 for efficient antibiotic resistance transfer.  相似文献   
992.
Eukaryotic genomes are organized into chromatin, divided into structurally and functionally distinct euchromatin and heterochromatin compartments. The high level of compaction and the abundance of repeated sequences in heterochromatin pose multiple challenges for the maintenance of genome stability. Cells have evolved sophisticated and highly controlled mechanisms to overcome these constraints. Here, we summarize recent findings on how the heterochromatic state influences DNA damage formation, signaling, and repair. By focusing on distinct heterochromatin domains in different eukaryotic species, we highlight the heterochromatin contribution to the compartmentalization of DNA damage repair in the cell nucleus and to the repair pathway choice. We also describe the diverse chromatin alterations associated with the DNA damage response in heterochromatin domains and present our current understanding of their regulatory mechanisms. Finally, we discuss the biological significance and the evolutionary conservation of these processes.  相似文献   
993.
Integrating how biodiversity and infectious disease dynamics are linked at multiple levels and scales is highly challenging. Chagas disease is a vector‐borne disease, with specificities of the triatomine vectors and Trypanosoma cruzi parasite life histories resulting in a complex multihost and multistrain life cycle. Here, we tested the hypothesis that T. cruzi transmission cycles are shaped by triatomine host communities and gut microbiota composition by comparing the integrated interactions of Triatoma sanguisuga in southern Louisiana with feeding hosts, T. cruzi parasite and bacterial microbiota in two habitats. Bugs were collected from resident's houses and animal shelters and analysed for genetic structure, blood feeding sources, T. cruzi parasites, and bacterial diversity by PCR amplification of specific DNA markers followed by next‐generation sequencing, in an integrative metabarcoding approach. T. sanguisuga feeding host communities appeared opportunistic and defined by host abundance in each habitat, yielding distinct parasite transmission networks among hosts. The circulation of a large diversity of T. cruzi DTUs was also detected, with TcII and TcV detected for the first time in triatomines in the US. The bacterial microbiota was highly diverse and varied significantly according to the DTU infecting the bugs, indicating specific interactions among them in the gut. Expanding such studies to multiple habitats and additional triatomine species would be key to further refine our understanding of the complex life cycles of multihost, multistrain parasites such as T. cruzi, and may lead to improved disease control strategies.  相似文献   
994.
Condition‐dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State‐of‐the‐art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double‐mutant strains, does not scale readily to multi‐condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG‐GI), by which double‐mutant strains generated via en masse “party” mating can also be monitored en masse for growth to detect genetic interactions. By using site‐specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG‐GI enables multiplexed quantitative tracking of double mutants via next‐generation sequencing. We applied BFG‐GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4‐nitroquinoline 1‐oxide (4NQO), bleomycin, zeocin, and three other DNA‐damaging environments. BFG‐GI recapitulated known genetic interactions and yielded new condition‐dependent genetic interactions. We validated and further explored a subnetwork of condition‐dependent genetic interactions involving MAG1, SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53.  相似文献   
995.
Introgressive hybridization poses a threat to the genetic integrity of black wildebeest (Connochaetes gnou) and blue wildebeest (Connochaetes taurinus) populations in South Africa. Black wildebeest is endemic to South Africa and was driven to near extinction in the early 1900s due to habitat destruction, hunting pressure and disease outbreaks. Blue wildebeest on the other hand are widely distributed in southern and east Africa. In South Africa the natural distribution ranges of both species overlap, however, extensive translocation of black wildebeest outside of its normal distribution range in South Africa have led to potential hybridization between the two species. The molecular identification of pure and admixed populations is necessary to design viable and sustainable conservation strategies, since phenotypic evidence of hybridization is inconclusive after successive generations of backcrossing. The aim of this study was to assess levels of hybridization in wildebeest using both species-specific and cross-species microsatellite markers. Black wildebeest (157) and blue wildebeest (122) from provincial and national parks and private localities were included as reference material, with 180 putative hybrid animals also screened. A molecular marker panel consisting of 13 cross-species and 11 species-specific microsatellite markers was developed. We used a Bayesian clustering model to confirm the uniqueness of blue- and black wildebeest reference groups, assign individuals to each of the two clusters, and determine levels of admixture. Results indicated a clear partition between black wildebeest and blue wildebeest (the average proportions of membership to black wildebeest and blue wildebeest clusters were QI?=?0.994 and QI?=?0.955 respectively). From the putative hybrid samples, only five hybrid individuals were confirmed. However, high levels of linkage disequilibrium were observed in the putative hybrid populations which may indicate historical hybridization. Measures of genetic diversity in the black wildebeest populations were found to be lower than that of the blue wildebeest. The observed lower level of genetic diversity was expected due to the demographic history of the specie. This study will make a significant contribution to inform a national conservation strategy to conserve the genetic integrity of both species.  相似文献   
996.
It is commonly accepted that brain phospholipids are highly enriched with long-chain polyunsaturated fatty acids (PUFAs). However, the evidence for this remains unclear. We used HPLC–MS to analyze the content and composition of phospholipids in rat brain and compared it to the heart, kidney, and liver. Phospholipids typically contain one PUFA, such as 18:2, 20:4, or 22:6, and one saturated fatty acid, such as 16:0 or 18:0. However, we found that brain phospholipids containing monounsaturated fatty acids in the place of PUFAs are highly elevated compared to phospholipids in the heart, kidney, and liver. The relative content of phospholipid containing PUFAs is ~ 60% in the brain, whereas it is over 90% in other tissues. The most abundant species of phosphatidylcholine (PC) is PC(16:0/18:1) in the brain, whereas PC(18:0/20:4) and PC(16:0/20:4) are predominated in other tissues. Moreover, several major species of plasmanyl and plasmenyl phosphatidylethanolamine are found to contain monounsaturated fatty acid in the brain only. Overall, our data clearly show that brain phospholipids are the least enriched with PUFAs of the four major organs, challenging the common belief that the brain is highly enriched with PUFAs.  相似文献   
997.
Vitamin D3 (cholecalciferol) is endogenously produced in the skin of primates when exposed to the appropriate wavelengths of ultraviolet light (UV-B). Common marmosets (Callithrix jacchus) maintained indoors require dietary provision of vitamin D3 due to lack of sunlight exposure. The minimum dietary vitamin D3 requirement and the maximum amount of vitamin D3 that can be metabolized by marmosets is unknown. Observations of metabolic bone disease and gastrointestinal malabsorption have led to wide variation in dietary vitamin D3 provision amongst research institutions, with resulting variation in circulating 25-hydroxyvitamin D3 (25(OH)D3), the accepted marker for vitamin D sufficiency/deficiency. Multiple studies have reported serum 25(OH)D3 in captive marmosets, but 25(OH)D3 is not the final product of vitamin D3 metabolism. In addition to serum 25(OH)D3, we measured the most physiologically active metabolite, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), and the less well understood metabolite, 24,25-dihydroxyvitamin D3 (24,25(OH)2D3) to characterize the marmoset's ability to metabolize dietary vitamin D3. We present vitamin D3 metabolite and related serum chemistry value colony reference ranges in marmosets provided diets with 26,367 (Colony A, N = 113) or 8,888 (Colony B, N = 52) international units (IU) of dietary vitamin D3 per kilogram of dry matter. Colony A marmosets had higher serum 25(OH)D3 (426 ng/ml [SD 200] vs. 215 ng/ml [SD 113]) and 24,25(OH)2D3 (53 ng/ml [SD 35] vs. 7 ng/ml [SD 5]). There was no difference in serum 1,25(OH)2D3 between the colonies. Serum 1,25(OH)2D3 increased and 25(OH)D3 decreased with age, but the effect was weak. Marmosets tightly regulate metabolism of dietary vitamin D3 into the active metabolite 1,25(OH)2D3; excess 25(OH)D3 is metabolized into 24,25(OH)2D3. This ability explains the tolerance of high levels of dietary vitamin D3 by marmosets, however, our data suggest that these high dietary levels are not required.  相似文献   
998.
The ability for vegetative growth and development of generative organs often reflects an adaptation to the environment and may be a suitable proxy for understanding population dynamics of rare relict species. An example of such a plant is Carex lachenalii Schkuhr, an arctic-alpine species, in the temperate zone of Europe only occurring in isolated localities of high-elevation mountain ranges. We aimed to assess whether there were relationships between flower production and clonal growth of C. lachenalii, both at the tuft and plot level, and how co-occurring vegetation could modify this relationship. In the study we focused on population-level traits of C. lachenalii, vegetation traits and components of functional diversity. At the tuft level we found that the proportion of flowering ramets of C. lachenalii decreased with increasing diameter of the tuft. At the plot level, in snowbed vegetation C. lachenalii produced more flowering ramets. We suggest this is due to higher environmental stress, expressed by high importance of habitat filtering (low functional dispersion) in shaping species composition of co-occurring vegetation. In granite grasslands and milder environment (expressed by higher functional dispersion), C. lachenalii produced more vegetative ramets, which we suggest is a result of a more competitive environment. While in snowbeds investment in flowering ramets could promote successful persistence of C. lachenalii, survival of subpopulations occurring in the highly competitive conditions of granite grasslands may be uncertain due to potentially weak adaptation to competition with graminoids and dwarf shrubs.  相似文献   
999.
Information garnered from the capture and handling of free-ranging animals helps advance understanding of wildlife ecology and can aid in decisions on wildlife management. Unfortunately, animals may experience increased levels of stress, injuries, and death resulting from captures (e.g., exertional myopathy, trauma). Partial sedation is a technique proposed to alleviate stress in animals during capture, yet efficacy of partial sedation for reducing stress and promoting survival post-capture remains unclear. We evaluated the effects of partial sedation on physiological, biochemical, and behavioral indicators of acute stress and probability of survival post-capture for mule deer (Odocoileus hemionus) that were captured via helicopter net-gunning in the eastern Greater Yellowstone Ecosystem, Wyoming, USA. We administered 10–30 mg of midazolam and 15 mg of azaperone intramuscularly (IM) to 32 mule deer in 2016 and 53 mule deer in 2017, and maintained a control group (captured but not sedated) of 38 mule deer in 2016 and 54 mule deer in 2017. To evaluate indicators of acute stress, we measured heart rate, blood-oxygen saturation, body temperature, respiration rate, and levels of serum cortisol. We recorded number of kicks and vocalizations of deer during handling and evaluated behavior during release. We also measured levels of fecal glucocorticoids as an indicator of baseline stress. Midazolam and azaperone did not reduce physiological, biochemical, or behavioral indicators of acute stress or influence probability of survival post-capture. Mule deer that were administered midazolam and azaperone, however, were more likely to hesitate, stumble or fall, and walk during release compared with individuals in the control group, which were more likely to trot, stot, or run without stumbling or falling. Our findings suggest that midazolam (10–30 mg IM) and azaperone (15 mg IM) may not yield physiological or demographic benefits for captured mule deer as previously assumed and may pose adverse effects that can complicate safety for captured animals, including drug-induced lethargy. Although we failed to find efficacy of midazolam and azaperone as a method for reducing stress in captured mule deer, the efficacy of midazolam and azaperone or other combinations of partial sedatives in reducing stress may depend on the dose of tranquilizer, study animal, capture setting, and how stress is defined. © 2020 The Wildlife Society.  相似文献   
1000.
Germline stem cells divide asymmetrically to produce one new daughter stem cell and one daughter cell that will subsequently undergo meiosis and differentiate to generate the mature gamete. The silent sister hypothesis proposes that in asymmetric divisions, the selective inheritance of sister chromatids carrying specific epigenetic marks between stem and daughter cells impacts cell fate. To facilitate this selective inheritance, the hypothesis specifically proposes that the centromeric region of each sister chromatid is distinct. In Drosophila germ line stem cells (GSCs), it has recently been shown that the centromeric histone CENP-A (called CID in flies)—the epigenetic determinant of centromere identity—is asymmetrically distributed between sister chromatids. In these cells, CID deposition occurs in G2 phase such that sister chromatids destined to end up in the stem cell harbour more CENP-A, assemble more kinetochore proteins and capture more spindle microtubules. These results suggest a potential mechanism of ‘mitotic drive’ that might bias chromosome segregation. Here we report that the inner kinetochore protein CENP-C, is required for the assembly of CID in G2 phase in GSCs. Moreover, CENP-C is required to maintain a normal asymmetric distribution of CID between stem and daughter cells. In addition, we find that CID is lost from centromeres in aged GSCs and that a reduction in CENP-C accelerates this loss. Finally, we show that CENP-C depletion in GSCs disrupts the balance of stem and daughter cells in the ovary, shifting GSCs toward a self-renewal tendency. Ultimately, we provide evidence that centromere assembly and maintenance via CENP-C is required to sustain asymmetric divisions in female Drosophila GSCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号