首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25735篇
  免费   1711篇
  国内免费   9篇
  2023年   140篇
  2022年   245篇
  2021年   656篇
  2020年   419篇
  2019年   558篇
  2018年   730篇
  2017年   608篇
  2016年   973篇
  2015年   1381篇
  2014年   1523篇
  2013年   1925篇
  2012年   2231篇
  2011年   2165篇
  2010年   1378篇
  2009年   1174篇
  2008年   1479篇
  2007年   1388篇
  2006年   1278篇
  2005年   1138篇
  2004年   1030篇
  2003年   984篇
  2002年   795篇
  2001年   173篇
  2000年   171篇
  1999年   197篇
  1998年   174篇
  1997年   157篇
  1996年   133篇
  1995年   123篇
  1994年   143篇
  1993年   121篇
  1992年   83篇
  1991年   105篇
  1990年   96篇
  1989年   83篇
  1988年   80篇
  1987年   62篇
  1986年   70篇
  1985年   96篇
  1984年   72篇
  1983年   81篇
  1982年   66篇
  1981年   85篇
  1980年   59篇
  1979年   66篇
  1978年   65篇
  1977年   62篇
  1976年   46篇
  1975年   53篇
  1974年   46篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
A bioautographic assay based on thin layer chromatography was developed for phosphoenolpyruvate (PEP) detecting as a known but rarely studied inhibitor of phosphoglucose isomerase (PGI). The protocol with NADP+/NBT/PMS (β-nicotinamide adenine dinucleotide phosphate/nitrotetrazolium blue chloride/phenazine methosulfate) staining was capable of detecting Mycobacterium tuberculosis H37Ra PGI inhibition using PEP. According to this method, visibly brighter spots (zones) against purple background are observed in the area of inhibition of the above-mentioned enzyme activity. The detection limit for PEP as an inhibitor of Mycobacterium tuberculosis H37Ra PGI was 226?μg per spot/zone. Noteworthy is that we are the first authors to have successfully used a bioautographic assay to detect Mycobacterium tuberculosis H37Ra PGI inhibition by PEP.  相似文献   
992.
Temporal and spatial regulation of genes mediated by tissue‐specific promoters and conditional gene expression systems provide a powerful tool to study gene function in health, disease, and during development. Although transgenic mice expressing the Cre recombinase in the gastric epithelium have been reported, there is a lack of models that allow inducible and reversible gene modification in the stomach. Here, we exploited the gastrointestinal epithelium‐specific expression pattern of the three trefoil factor (Tff) genes and bacterial artificial chromosome transgenesis to generate a novel mouse strain that expresses the CreERT2 recombinase and the reverse tetracycline transactivator (rtTA). The Tg(Tff1‐CreERT2;Tff2‐rtTA;Tff3‐Luc) strain confers tamoxifen‐inducible irreversible somatic recombination and allows simultaneous doxycycline‐dependent reversible gene activation in the gastric epithelium of developing and adult mice. This strain also confers luciferase activity to the intestinal epithelium to enable in vivo bioluminescence imaging. Using fluorescent reporters as conditional alleles, we show Tff1‐CreERT2 and Tff2‐rtTA transgene activity in a partially overlapping subset of long‐term regenerating gastric stem/progenitor cells. Therefore, the Tg(Tff1‐CreERT2;Tff2‐rtTA;Tff3‐Luc) strain can confer intermittent transgene expression to gastric epithelial cells that have undergone previous gene modification, and may be suitable to genetically model therapeutic intervention during development, tumorigenesis, and other genetically tractable diseases. Birth Defects Research (Part A) 106:626–635, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   
993.
The repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) is an essential process in maintenance of chromosomal stability. A key player of HR is the strand exchange factor RAD51 whose assembly at sites of DNA damage is tightly regulated. We detected an endogenous complex of RAD51 with the calcium-binding protein S100A11, which is localized at sites of DNA repair in HaCaT cells as well as in normal human epidermal keratinocytes (NHEK) synchronized in S phase. In biochemical assays, we revealed that S100A11 enhanced the RAD51 strand exchange activity. When cells expressing a S100A11 mutant lacking the ability to bind Ca2+, a prolonged persistence of RAD51 in repair sites and nuclear γH2AX foci was observed suggesting an incomplete DNA repair. The same phenotype became apparent when S100A11 was depleted by RNA interference. Furthermore, down-regulation of S100A11 resulted in both reduced sister chromatid exchange confirming the restriction of the recombination capacity of the cells, and in an increase of chromosomal aberrations reflecting the functional requirement of S100A11 for the maintenance of genomic stability. Our data indicate that S100A11 is involved in homologous recombination by regulating the appearance of RAD51 in DSB repair sites. This function requires the calcium-binding activity of S100A11.  相似文献   
994.
The liver is the most important organ in cholesterol metabolism, which is instrumental in regulating cell proliferation and differentiation. The gene Tm7sf2 codifies for 3 β-hydroxysterol-Δ14-reductase (C14-SR), an endoplasmic reticulum resident protein catalyzing the reduction of C14-unsaturated sterols during cholesterol biosynthesis from lanosterol. In this study we analyzed the role of C14-SR in vivo during cell proliferation by evaluating liver regeneration in Tm7sf2 knockout (KO) and wild-type (WT) mice. Tm7sf2 KO mice showed no alteration in cholesterol content. However, accumulation and delayed catabolism of hepatic triglycerides was observed, resulting in persistent steatosis at all times post hepatectomy. Moreover, delayed cell cycle progression to the G1/S phase was observed in Tm7sf2 KO mice, resulting in reduced cell division at the time points examined. This was associated to abnormal ER stress response, leading to alteration in p53 content and, consequently, induction of p21 expression in Tm7sf2 KO mice. In conclusion, our results indicate that Tm7sf2 deficiency during liver regeneration alters lipid metabolism and generates a stress condition, which, in turn, transiently unbalances hepatocytes cell cycle progression.  相似文献   
995.
Evolution of biological sensory systems is driven by the need for efficient responses to environmental stimuli. A paradigm among prokaryotes is the chemotaxis system, which allows bacteria to navigate gradients of chemoattractants by biasing their run-and-tumble motion. A notable feature of chemotaxis is adaptation: after the application of a step stimulus, the bacterial running time relaxes to its pre-stimulus level. The response to the amino acid aspartate is precisely adapted whilst the response to serine is not, in spite of the same pathway processing the signals preferentially sensed by the two receptors Tar and Tsr, respectively. While the chemotaxis pathway in E. coli is well characterized, the role of adaptation, its functional significance and the ecological conditions where chemotaxis is selected, are largely unknown. Here, we investigate the role of adaptation in the climbing of gradients by E. coli. We first present theoretical arguments that highlight the mechanisms that control the efficiency of the chemotactic up-gradient motion. We discuss then the limitations of linear response theory, which motivate our subsequent experimental investigation of E. coli speed races in gradients of aspartate, serine and combinations thereof. By using microfluidic techniques, we engineer controlled gradients and demonstrate that bacterial fronts progress faster in equal-magnitude gradients of serine than aspartate. The effect is observed over an extended range of concentrations and is not due to differences in swimming velocities. We then show that adding a constant background of serine to gradients of aspartate breaks the adaptation to aspartate, which results in a sped-up progression of the fronts and directly illustrate the role of adaptation in chemotactic gradient-climbing.  相似文献   
996.
Periodontitis is characterized by chronic inflammation and osteoclast‐mediated bone loss regulated by the receptor activator of nuclear factor‐κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG). The aim of this study was to investigate the effect of aminothiazoles targeting prostaglandin E synthase‐1 (mPGES‐1) on RANKL‐ and lipopolysaccharide (LPS)‐mediated osteoclastogenesis and prostaglandin E2 (PGE2) production in vitro using the osteoclast precursor RAW 264.7 cells. RAW 264.7 cells were treated with RANKL or LPS alone or in combination with the aminothiazoles 4‐([4‐(2‐naphthyl)‐1,3‐thiazol‐2‐yl]amino)phenol (TH‐848) or 4‐(3‐fluoro‐4‐methoxyphenyl)‐N‐(4‐phenoxyphenyl)‐1,3‐thiazol‐2‐amine (TH‐644). Aminothiazoles significantly decreased the number of multinucleated tartrate‐resistant acid phosphatase (TRAP)‐positive osteoclast‐like cells in cultures of RANKL‐ and LPS‐stimulated RAW 264.7 cells, as well as reduced the production of PGE2 in culture supernatants. LPS‐treatment induced mPGES‐1 mRNA expression at 16 hrs and the subsequent PGE2 production at 72 hrs. Conversely, RANKL did not affect PGE2 secretion but markedly reduced mPGES‐1 at mRNA level. Furthermore, mRNA expression of TRAP and cathepsin K (CTSK) was reduced by aminothiazoles in RAW 264.7 cells activated by LPS, whereas RANK, OPG or tumour necrosis factor α mRNA expression was not significantly affected. In RANKL‐activated RAW 264.7 cells, TH‐848 and TH‐644 down‐regulated CTSK but not TRAP mRNA expression. Moreover, the inhibitory effect of aminothiazoles on PGE2 production was also confirmed in LPS‐stimulated human peripheral blood mononuclear cell cultures. In conclusion, the aminothiazoles reduced both LPS‐ and RANKL‐mediated osteoclastogenesis and PGE2 production in RAW 264.7 cells, suggesting these compounds as potential inhibitors for treatment of chronic inflammatory bone resorption, such as periodontitis.  相似文献   
997.
998.
999.
1000.
A wide variety of fungi and bacteria are known to contaminate fuels and fuel systems. These microbial contaminants have been linked to fuel system fouling and corrosion. The fungus Hormoconis resinae, a common jet fuel contaminant, is used in this study as a model for developing innovative risk assessment methods. A novel qPCR protocol to detect and quantify H. resinae in, and together with, total fungal contamination of fuel systems is reported. Two primer sets, targeting the markers RPB2 and ITS, were selected for their remarkable specificity and sensitivity. These primers were successfully applied on fungal cultures and diesel samples demonstrating the validity and reliability of the established qPCR protocol. This novel tool allows clarification of the current role of H. resinae in fuel contamination cases, as well as providing a technique to detect fungal outbreaks in fuel systems. This tool can be expanded to other well-known fuel-deteriorating microorganisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号