首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57813篇
  免费   3829篇
  国内免费   24篇
  61666篇
  2023年   338篇
  2022年   787篇
  2021年   1435篇
  2020年   835篇
  2019年   1094篇
  2018年   1470篇
  2017年   1221篇
  2016年   2020篇
  2015年   3065篇
  2014年   3360篇
  2013年   4388篇
  2012年   5066篇
  2011年   4880篇
  2010年   3000篇
  2009年   2573篇
  2008年   3603篇
  2007年   3445篇
  2006年   3094篇
  2005年   2829篇
  2004年   2620篇
  2003年   2506篇
  2002年   2165篇
  2001年   407篇
  2000年   305篇
  1999年   413篇
  1998年   487篇
  1997年   351篇
  1996年   328篇
  1995年   305篇
  1994年   299篇
  1993年   297篇
  1992年   179篇
  1991年   190篇
  1990年   195篇
  1989年   148篇
  1988年   144篇
  1987年   117篇
  1986年   103篇
  1985年   139篇
  1984年   126篇
  1983年   110篇
  1982年   109篇
  1981年   112篇
  1980年   104篇
  1979年   99篇
  1978年   70篇
  1977年   77篇
  1976年   60篇
  1975年   59篇
  1973年   56篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
942.
Cultivated and wild potato species synthesize a wide variety of steroidal glycoalkaloids (GA) that may affect either human health or biotic stress resistance. Therefore, GA composition must be a major criterion in the evaluation of breeding products when species genomes are merged and/or manipulated. This work reports the results of GA analysis performed on unique haploid (2n=2x=24) plants obtained from tetraploid (2n=4x=48) Solanum bulbocastanumS. tuberosum hybrids through in vitro anther culture. Glycoalkaloids were extracted from tubers and analyzed by HPLC. Haploids generally showed the occurrence of parental GA. However, in several cases loss of parental GA and gain of new GA lacking in the parents was observed. It may be hypothesized that new GA profiles of our haploids is the result of either genetic recombination or combinatorial biochemistry events. To highlight differences between haploids and parents, soluble proteins and antioxidant activities were also determined. Both were always higher in haploids compared to their parents. The nature of the newly formed GAs will be further investigated, because they may represent new metabolites that can be used against pest and diseases, or are useful for human health.  相似文献   
943.
944.
Previous works reported that a mild increase in homocysteine level is a risk factor for cardiovascular and neurodegenerative diseases in humans. Homocysteine thiolactone is a cyclic thioester, most of which is produced by an error-editing function of methionyl-tRNA synthetase, causing in vivo post-translational protein modifications by reacting with the ?-amino group of lysine residues. In cells, the rate of homocysteine thiolactone synthesis is strictly dependent on the levels of the precursor metabolite, homocysteine. In this work, using bovine serum albumin as a model, we investigated the impact of N-homocysteinylation on protein conformation as well as its cellular actions. Previous works demonstrated that protein N-homocysteinylation causes enzyme inactivation, protein aggregation, and precipitation. In addition, in the last few years, several pieces of evidence have indicated that protein unfolding and aggregation are crucial events leading to the formation of amyloid fibrils associated with a wide range of human pathologies. For the first time, our results reveal how the low level of protein N-homocysteinylation can induce mild conformational changes leading to the formation of native-like aggregates evolving over time, producing amyloid-like structures. Taking into account the fact that in humans about 70% of circulating homocysteine is N-linked to blood proteins such as serum albumin and hemoglobin, the results reported in this article could have pathophysiological relevance and could contribute to clarify the mechanisms underlying some pathological consequences described in patients affected by hyperhomocysteinemia.  相似文献   
945.
Invariant NKT (iNKT) cells play an effector/adjuvant function during antimicrobial and antitumoral immunity and a regulatory role to induce immune tolerance and prevent autoimmunity. iNKT cells that differentially modulate adaptive immunity do not bear a unique phenotype and/or specific cytokine secretion profile, thus opening questions on how a single T cell subset can exert opposite immunological tasks. In this study, we show that iNKT cells perform their dual roles through a single mechanism of action relying on the cognate interaction with myeloid dendritic cells (DCs) and leading to opposite effects depending on the presence of other maturation stimuli simultaneously acting on DCs. The contact of murine purified iNKT cells with immature autologous DCs directly triggers the tolerogenic maturation of DCs, rendering them able to induce regulatory T cell differentiation and prevent autoimmune diabetes in vivo. Conversely, the interaction of the same purified iNKT cells with DCs, in the presence of simultaneous TLR4 stimulation, significantly enhances proinflammatory DC maturation and IL-12 secretion. The different iNKT cell effects are mediated through distinct mechanisms and activation of different molecular pathways within the DC: CD1d signaling and activation of the ERK1/2 pathway for the tolerogenic action, and CD40-CD40L interaction and NF-κB activation for the adjuvant effect. Our data suggest that the DC decision to undergo proinflammatory or tolerogenic maturation results from the integration of different signals received at the time of iNKT cell contact and could have important therapeutic implications for exploiting iNKT cell adjuvant/regulatory properties in autoimmune diseases, infections, and cancer.  相似文献   
946.
947.

Background  

Chondroitin sulphate is a complex polysaccharide having important structural and protective functions in animal tissues. Extracted from animals, this compound is used as a human anti-inflammatory drug. Among bacteria, Escherichia coli K4 produces a capsule containing a non-sulphate chondroitin and its development may provide an efficient and cheap fermentative production of the polysaccharide.  相似文献   
948.
To date, the calcium-regulated membrane guanylate cyclase Rod Outer Segment Guanylate Cyclase type 1 (ROS-GC1) transduction system in addition to photoreceptors is known to be expressed in three other types of neuronal cells: in the pinealocytes, mitral cells of the olfactory bulb and the gustatory epithelium of tongue. Very recent studies from our laboratory show that expression of ROS-GC1 is not restricted to the neuronal cells; the male gonads and the spermatozoa also express ROS-GC1. In this presentation, the authors review the existing information on the localization and function of guanylate cyclase with special emphasis on Ca2+-modulated membrane guanylate cyclase, ROS-GC1, in the testes. The role of ROS-GC1 and its Ca2+-sensing modulators in the processes of spermatogenesis and fertilization are discussed.  相似文献   
949.
The gamma-secretase complex catalyzes intramembrane proteolysis of a number of transmembrane proteins, including amyloid precursor protein, Notch, ErbB4, and E-cadherin. gamma-Secretase is known to contain four major protein constituents: presenilin (PS), nicastrin, Aph-1, and Pen-2, all of which are integral membrane proteins. There is increasing evidence that the formation of the complex and the stability of the individual components are tightly controlled in the cell, assuring correct composition of functional complexes. In this report, we investigate the topology, localization, and mechanism for destabilization of Pen-2 in relation to PS function. We show that PS1 regulates the subcellular localization of Pen-2: in the absence of PS, Pen-2 is sequestered in the endoplasmic reticulum (ER) and not transported to post-ER compartments, where the mature gamma-secretase complexes reside. PS deficiency also leads to destabilization of Pen-2, which is alleviated by proteasome inhibitors. In keeping with this, we show that Pen-2, which adopts a hairpin structure with the N and C termini facing the luminal space, is ubiquitylated prior to degradation and presumably retrotranslocated from the ER to the cytoplasm. Collectively, our data suggest that failure to become incorporated into the gamma-secretase complex leads to degradation of Pen-2 through the ER-associated degradation-proteasome pathway.  相似文献   
950.
Freeze-fracture electron microscopy was used to study water content related freezing resistance in Grand Rapids lettuce seeds. Consistent and recognizable conformational changes occurred in lipid-water phases of lettuce seeds at different moisture contents. In air-dry lettuce seed cotyledons, the lipids lying in spherical lipid bodies near the cell wall appeared amorphous, while the structure was crystalline above 20% water content. The lipid bodies interassociated into membrane bilayers in seeds containing 20 to 25% water. Such lyotropic phase transitions in membrane lipids during lettuce seed hydration are believed to contribute to the biphasic freezing behavior observed in lettuce seeds at different moisture contents and to provide a natural freezing tolerance mechanism for highly desiccated plant tissues such as seeds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号