首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   6篇
  103篇
  2022年   2篇
  2021年   1篇
  2016年   3篇
  2015年   1篇
  2014年   4篇
  2013年   6篇
  2012年   8篇
  2011年   12篇
  2010年   2篇
  2008年   9篇
  2007年   8篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   7篇
  2002年   10篇
  2001年   1篇
  2000年   2篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
排序方式: 共有103条查询结果,搜索用时 15 毫秒
31.
32.

Background

Aging processes and several vascular burden factors have been shown to increase the risk of dementia including Alzheimer''s disease. While pathological alterations in dementia precede diagnosis by many years, reorganization of brain processing might temporarily delay cognitive decline. We hypothesized that in healthy elderly individuals both age-related neural and vascular factors known to be related to the development of dementia impact functional cortical hemodynamics during increased cognitive demands.

Methods

Vascular burden factors and cortical functional hemodynamics during verbal fluency were assessed in 1052 non-demented elderly individuals (51 to 83 years; cross-sectional data of the longitudinal TREND study) using functional near-infrared spectroscopy (fNIRS). The prediction of functional hemodynamic responses by age in multiple regressions and the impact of single and cumulative vascular burden factors including hypertension, diabetes, obesity, smoking and atherosclerosis were investigated.

Results

Replicating and extending previous findings we could show that increasing age predicted functional hemodynamics to be increased in right prefrontal and bilateral parietal cortex, and decreased in bilateral inferior frontal junction during phonological fluency. Cumulative vascular burden factors, with hypertension in particular, decreased left inferior frontal junction hemodynamic responses during phonological fluency. However, age and vascular burden factors showed no statistical interaction on functional hemodynamics.

Conclusion

Based on these findings, one might hypothesize that increased fronto-parietal processing may represent age-related compensatory reorganization during increased cognitive demands. Vascular burden factors, such as hypertension, may contribute to regional cerebral hypoperfusion. These neural and vascular hemodynamic determinants should be investigated longitudinally and combined with other markers to advance the prediction of future cognitive decline and dementia.  相似文献   
33.
An age-dependent association between variation at the FTO locus and BMI in children has been suggested. We meta-analyzed associations between the FTO locus (rs9939609) and BMI in samples, aged from early infancy to 13 years, from 8 cohorts of European ancestry. We found a positive association between additional minor (A) alleles and BMI from 5.5 years onwards, but an inverse association below age 2.5 years. Modelling median BMI curves for each genotype using the LMS method, we found that carriers of minor alleles showed lower BMI in infancy, earlier adiposity rebound (AR), and higher BMI later in childhood. Differences by allele were consistent with two independent processes: earlier AR equivalent to accelerating developmental age by 2.37% (95% CI 1.87, 2.87, p?=?10(-20)) per A allele and a positive age by genotype interaction such that BMI increased faster with age (p?=?10(-23)). We also fitted a linear mixed effects model to relate genotype to the BMI curve inflection points adiposity peak (AP) in infancy and AR. Carriage of two minor alleles at rs9939609 was associated with lower BMI at AP (-0.40% (95% CI: -0.74, -0.06), p?=?0.02), higher BMI at AR (0.93% (95% CI: 0.22, 1.64), p?=?0.01), and earlier AR (-4.72% (-5.81, -3.63), p?=?10(-17)), supporting cross-sectional results. Overall, we confirm the expected association between variation at rs9939609 and BMI in childhood, but only after an inverse association between the same variant and BMI in infancy. Patterns are consistent with a shift on the developmental scale, which is reflected in association with the timing of AR rather than just a global increase in BMI. Results provide important information about longitudinal gene effects and about the role of FTO in adiposity. The associated shifts in developmental timing have clinical importance with respect to known relationships between AR and both later-life BMI and metabolic disease risk.  相似文献   
34.
35.
Targeted sequencing is a cost-efficient way to obtain answers to biological questions in many projects, but the choice of the enrichment method to use can be difficult. In this study we compared two hybridization methods for target enrichment for massively parallel sequencing and single nucleotide polymorphism (SNP) discovery, namely Nimblegen sequence capture arrays and the SureSelect liquid-based hybrid capture system. We prepared sequencing libraries from three HapMap samples using both methods, sequenced the libraries on the Illumina Genome Analyzer, mapped the sequencing reads back to the genome, and called variants in the sequences. 74-75% of the sequence reads originated from the targeted region in the SureSelect libraries and 41-67% in the Nimblegen libraries. We could sequence up to 99.9% and 99.5% of the regions targeted by capture probes from the SureSelect libraries and from the Nimblegen libraries, respectively. The Nimblegen probes covered 0.6 Mb more of the original 3.1 Mb target region than the SureSelect probes. In each sample, we called more SNPs and detected more novel SNPs from the libraries that were prepared using the Nimblegen method. Thus the Nimblegen method gave better results when judged by the number of SNPs called, but this came at the cost of more over-sampling.  相似文献   
36.

Background

The proportion of conserved DNA sequences with no clear function is steadily growing in bioinformatics databases. Studies of sequence and structural homology have indicated that many uncharacterized protein domain sequences are variants of functionally described domains. If these variants promote an organism''s ecological fitness, they are likely to be conserved in the genome of its progeny and the population at large. The genetic composition of microbial communities in their native ecosystems is accessible through metagenomics. We hypothesize the co-variation of protein domain sequences across metagenomes from similar ecosystems will provide insights into their potential roles and aid further investigation.

Methodology/Principal findings

We calculated the correlation of Pfam protein domain sequences across the Global Ocean Sampling metagenome collection, employing conservative detection and correlation thresholds to limit results to well-supported hits and associations. We then examined intercorrelations between domains of unknown function (DUFs) and domains involved in known metabolic pathways using network visualization and cluster-detection tools. We used a cautious “guilty-by-association” approach, referencing knowledge-level resources to identify and discuss associations that offer insight into DUF function. We observed numerous DUFs associated to photobiologically active domains and prevalent in the Cyanobacteria. Other clusters included DUFs associated with DNA maintenance and repair, inorganic nutrient metabolism, and sodium-translocating transport domains. We also observed a number of clusters reflecting known metabolic associations and cases that predicted functional reclassification of DUFs.

Conclusion/Significance

Critically examining domain covariation across metagenomic datasets can grant new perspectives on the roles and associations of DUFs in an ecological setting. Targeted attempts at DUF characterization in the laboratory or in silico may draw from these insights and opportunities to discover new associations and corroborate existing ones will arise as more large-scale metagenomic datasets emerge.  相似文献   
37.

Background

Circulating lipids levels, as well as several familial lipid metabolism disorders, are strongly associated with initiation and progression of atherosclerosis and incidence of myocardial infarction (MI).

Objectives

We hypothesized that genetic variants associated with circulating lipid levels would also be associated with MI incidence, and have tested this in three independent samples.

Setting and Subjects

Using age- and sex-adjusted additive genetic models, we analyzed 554 single nucleotide polymorphisms (SNPs) in 41 candidate gene regions proposed to be involved in lipid-related pathways potentially predisposing to incidence of MI in 2,602 participants of the Swedish Twin Register (STR; 57% women). All associations with nominal P<0.01 were further investigated in the Uppsala Longitudinal Study of Adult Men (ULSAM; N = 1,142).

Results

In the present study, we report associations of lipid-related SNPs with incident MI in two community-based longitudinal studies with in silico replication in a meta-analysis of genome-wide association studies. Overall, there were 9 SNPs in STR with nominal P-value <0.01 that were successfully genotyped in ULSAM. rs4149313 located in ABCA1 was associated with MI incidence in both longitudinal study samples with nominal significance (hazard ratio, 1.36 and 1.40; P-value, 0.004 and 0.015 in STR and ULSAM, respectively). In silico replication supported the association of rs4149313 with coronary artery disease in an independent meta-analysis including 173,975 individuals of European descent from the CARDIoGRAMplusC4D consortium (odds ratio, 1.03; P-value, 0.048).

Conclusions

rs4149313 is one of the few amino acid changing variants in ABCA1 known to associate with reduced cholesterol efflux. Our results are suggestive of a weak association between this variant and the development of atherosclerosis and MI.  相似文献   
38.
The green alga Chlamydomonas reinhardtii is one of the most studied microorganisms in photosynthesis research and for biofuel production. A detailed understanding of the dynamic regulation of its carbon metabolism is therefore crucial for metabolic engineering. Post-translational modifications can act as molecular switches for the control of protein function. Acetylation of the ?-amino group of lysine residues is a dynamic modification on proteins across organisms from all kingdoms. Here, we performed mass spectrometry-based profiling of proteome and lysine acetylome dynamics in Chlamydomonas under varying growth conditions. Chlamydomonas liquid cultures were transferred from mixotrophic (light and acetate as carbon source) to heterotrophic (dark and acetate) or photoautotrophic (light only) growth conditions for 30 h before harvest. In total, 5863 protein groups and 1376 lysine acetylation sites were identified with a false discovery rate of <1%. As a major result of this study, our data show that dynamic changes in the abundance of lysine acetylation on various enzymes involved in photosynthesis, fatty acid metabolism, and the glyoxylate cycle are dependent on acetate and light. Exemplary determination of acetylation site stoichiometries revealed particularly high occupancy levels on K175 of the large subunit of RuBisCO and K99 and K340 of peroxisomal citrate synthase under heterotrophic conditions. The lysine acetylation stoichiometries correlated with increased activities of cellular citrate synthase and the known inactivation of the Calvin–Benson cycle under heterotrophic conditions. In conclusion, the newly identified dynamic lysine acetylation sites may be of great value for genetic engineering of metabolic pathways in Chlamydomonas.  相似文献   
39.
Stereocomplexation of poly(L-lactide) (PLLA) with star shaped D-lactic acid (D-LA) oligomers with different architectures and end-groups clearly altered the degradation rate and affected the degradation product patterns. Altogether, nine materials were studied: standard PLLA and eight blends of PLLA with either 30 or 50 wt % of four different D-LA oligomers. The influence of several factors, including temperature, degradation time, and amount and type of D-LA oligomer, on the hydrolytic degradation process was investigated using a fractional factorial experimental design. Stereocomplexes containing star shaped D-LA oligomers with four alcoholic end-groups underwent a rather slow hydrolytic degradation with low release of degradation products. Materials with linear D-LA oligomers exhibited similar mass loss but released higher concentrations of shorter acidic degradation products. Increasing the fraction of D-LA oligomers with a linear structure or with four alcoholic end-groups resulted in slower mass loss due to higher degree of stereocomplexation. The opposite results were obtained after addition of D-LA oligomers with carboxylic chain-ends. These materials demonstrated lower degree of stereocomplexation and larger mass and molar mass loss, and also the release of degradation products increased. Increasing the number of alcoholic chain-ends from four to six decreased the degree of stereocomplexation, leading to faster mass loss. The degree of stereocomplexation and degradation rate were customized by changing the architecture and end-groups of the D-LA oligomers.  相似文献   
40.
To detect genes with CpG sites that display methylation patterns that are characteristic of acute lymphoblastic leukemia (ALL) cells, we compared the methylation patterns of cells taken at diagnosis from 20 patients with pediatric ALL to the methylation patterns in mononuclear cells from bone marrow of the same patients during remission and in non-leukemic control cells from bone marrow or blood. Using a custom-designed assay, we measured the methylation levels of 1,320 CpG sites in regulatory regions of 413 genes that were analyzed because they display allele-specific gene expression (ASE) in ALL cells. The rationale for our selection of CpG sites was that ASE could be the result of allele-specific methylation in the promoter regions of the genes. We found that the ALL cells had methylation profiles that allowed distinction between ALL cells and control cells. Using stringent criteria for calling differential methylation, we identified 28 CpG sites in 24 genes with recurrent differences in their methylation levels between ALL cells and control cells. Twenty of the differentially methylated genes were hypermethylated in the ALL cells, and as many as nine of them (AMICA1, CPNE7, CR1, DBC1, EYA4, LGALS8, RYR3, UQCRFS1, WDR35) have functions in cell signaling and/or apoptosis. The methylation levels of a subset of the genes were consistent with an inverse relationship with the mRNA expression levels in a large number of ALL cells from published data sets, supporting a potential biological effect of the methylation signatures and their application for diagnostic purposes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号