首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7891篇
  免费   751篇
  国内免费   7篇
  2022年   48篇
  2021年   118篇
  2020年   66篇
  2019年   91篇
  2018年   118篇
  2017年   111篇
  2016年   176篇
  2015年   304篇
  2014年   345篇
  2013年   444篇
  2012年   526篇
  2011年   541篇
  2010年   381篇
  2009年   355篇
  2008年   479篇
  2007年   487篇
  2006年   436篇
  2005年   421篇
  2004年   428篇
  2003年   390篇
  2002年   385篇
  2001年   81篇
  2000年   60篇
  1999年   96篇
  1998年   133篇
  1997年   82篇
  1996年   83篇
  1995年   75篇
  1994年   79篇
  1993年   73篇
  1992年   55篇
  1991年   59篇
  1990年   72篇
  1989年   49篇
  1988年   55篇
  1987年   56篇
  1986年   40篇
  1985年   62篇
  1984年   58篇
  1983年   58篇
  1982年   62篇
  1981年   58篇
  1980年   60篇
  1979年   47篇
  1978年   42篇
  1977年   42篇
  1976年   48篇
  1974年   37篇
  1973年   47篇
  1970年   24篇
排序方式: 共有8649条查询结果,搜索用时 218 毫秒
961.
Although several studies have indicated a paternal effect on bovine embryo development, no conclusive data exist on the effect of in vivo bull fertility on apoptosis. Therefore, it was the main objective of this study to compare the apoptotic cell ratio (ACR) in embryos originating from bulls with different in vivo fertility. However, since it is has been demonstrated before that bulls with different in vivo fertility differ in timing of first cleavage, it was necessary to investigate first the effect of timing of development on apoptosis in vitro in order to get an unbiased insight in the contribution of in vivo bull fertility on apoptosis in bovine blastocysts. In the first experiment, bovine embryos (n = 939) were allocated to different groups according to cleavage rate at 30, 36 and 48 hpi and blastocysts were selected at 7 and 8 dpi. The blastocyst rate at 7 dpi was significantly lower in embryos which had first cleaved at 48 hpi than in embryos from the 30 and 36 hpi group (P < 0.05). The ACR after TUNEL in day 7 blastocyst was significantly lower in the 30 hpi group in comparison with the 36 and 48 hpi group (P < 0.05) and lower in day 7 blastocysts than in day 8 blastocysts. In the second experiment, sperm of eight bulls with different non return rates was used for in vitro bovine embryo production (n = 3820 oocytes). Cleavage rates (30, 36 and 48 hpi) and blastocyst rate (7 dpi) were determined. Only very low negative correlations could be found between in vivo and in vitro bull fertility and ACR did not differ between groups derived from sires with either low or normal fertility (P > 0.05). Further research in serum free conditions is needed to confirm that the lower ACR in early cleaved embryos could be mediated by the cooperative interaction of embryos of good quality cultured in group. In vivo bull fertility could hardly be correlated with in vitro blastocyst yield and could not be correlated with appearance of apoptosis.  相似文献   
962.
Short nucleotide sequence repetitions in DNA can provide selective benefits and also can be a source of genetic instability arising from deletions guided by pairing between misaligned strands. These findings raise the question of how the frequency of deletion mutations is influenced by the length of sequence repetitions and by the distance between them. An experimental approach to this question was presented by the heat-sensitive phenotype conferred by pcaG1102, a 30-bp deletion in one of the structural genes for Acinetobacter baylyi protocatechuate 3,4-dioxygenase, which is required for growth with quinate. The original pcaG1102 deletion appears to have been guided by pairing between slipped DNA strands from nearby repeated sequences in wild-type pcaG. Placement of an in-phase termination codon between the repeated sequences in pcaG prevents growth with quinate and permits selection of sequence-guided deletions that excise the codon and permit quinate to be used as a growth substrate at room temperature. Natural transformation facilitated introduction of 68 different variants of the wild-type repeat structure within pcaG into the A. baylyi chromosome, and the frequency of deletion between the repetitions was determined with a novel method, precision plating. The deletion frequency increases with repeat length, decreases with the distance between repeats, and requires a minimum amount of similarity to occur at measurable rates. Deletions occurred in a recA-deficient background. Their frequency was unaffected by deficiencies in mutS and was increased by inactivation of recG.  相似文献   
963.
Fatty acid-binding proteins (FABPs) facilitate the diffusion of fatty acids within cellular cytoplasm. Compared with C57Bl/6J mice maintained on a high-fat diet, adipose-FABP (A-FABP) null mice exhibit increased fat mass, decreased lipolysis, increased muscle glucose oxidation, and attenuated insulin resistance, whereas overexpression of epithelial-FABP (E-FABP) in adipose tissue results in decreased fat mass, increased lipolysis, and potentiated insulin resistance. To identify the mechanisms that underlie these processes, real-time PCR analyses indicate that the expression of hormone-sensitive lipase is reduced, while perilipin A is increased in A-FABP/aP2 null mice relative to E-FABP overexpressing mice. In contrast, de novo lipogenesis and expression of genes encoding lipoprotein lipase, CD36, long-chain acyl-CoA synthetase 5, and diacylglycerol acyltransferase are increased in A-FABP/aP2 null mice relative to E-FABP transgenic animals. Consistent with an increase in de novo lipogenesis, there was an increase in adipose C16:0 and C16:1 acyl-CoA pools. There were no changes in serum free fatty acids between genotypes. Serum levels of resistin were decreased in the E-FABP transgenic mice, whereas serum and tissue adiponectin were increased in A-FABP/aP2 null mice and decreased in E-FABP transgenic animals; leptin expression was unaffected. These results suggest that the balance between lipolysis and lipogenesis in adipocytes is remodeled in the FABP null and transgenic mice and is accompanied by the reprogramming of adipokine expression in fat cells and overall changes in plasma adipokines.  相似文献   
964.
The adaptor protein FE65 interacts with the beta-amyloid precursor protein (APP) via its C-terminal phosphotyrosine binding (PTB) domain and affects APP processing and Abeta production. Our previous data demonstrate that the apoE receptor ApoEr2 co-precipitated with APP and suggest that there are extracellular and intracellular interactions between these two transmembrane proteins. We hypothesized that FE65 acts as an intracellular link between ApoEr2 and APP. Co-immunoprecipitation experiments in COS7 cells demonstrated an interaction between ApoEr2 and FE65 that depended on the N-terminal PTB domain of FE65. Full-length FE65 increased co-immunoprecipitation of ApoEr2 and APP. Full-length FE65 also increased surface expression of ApoEr2, as determined by surface protein biotinylation and live cell surface staining. Constructs containing both the C- and N-terminal PTB domains of FE65 increased secreted APP, secreted ApoEr2, APP C-terminal fragment, and ApoEr2 C-terminal fragment, but constructs containing only single PTB domains did not affect APP or ApoEr2 processing. In addition, full-length FE65 decreased Abeta to a significantly greater extent than individual FE65 domains. These data suggest that FE65 can bind APP and ApoEr2 at the same time and affect the processing of each.  相似文献   
965.
As reported, the two-component system ColRS is involved in two completely different processes. It facilitates the root colonization ability of Pseudomonas fluorescens and is necessary for the Tn4652 transposition-dependent accumulation of phenol-utilizing mutants in Pseudomonas putida. To determine the role of the ColRS system in P. putida, we searched for target genes of response regulator ColR by use of a promoter library. Promoter screening was performed on phenol plates to mimic the conditions under which the effect of ColR on transposition was detected. The library screen revealed the porin-encoding gene oprQ and the alginate biosynthesis gene algD occurring under negative control of ColR. Binding of ColR to the promoter regions of oprQ and algD in vitro confirmed its direct involvement in regulation of these genes. Additionally, the porin-encoding gene ompA(PP0773) and the type I pilus gene csuB were also identified in the promoter screen. However, it turned out that ompA(PP0773) and csuB were actually affected by phenol and that the influence of ColR on these promoters was indirect. Namely, our results show that ColR is involved in phenol tolerance of P. putida. Phenol MIC measurement demonstrated that a colR mutant strain did not tolerate elevated phenol concentrations. Our data suggest that increased phenol susceptibility is also the reason for inhibition of transposition of Tn4652 in phenol-starving colR mutant bacteria. Thus, the current study revealed the role of the ColRS two-component system in regulation of membrane functionality, particularly in phenol tolerance of P. putida.  相似文献   
966.
Nogo receptor (NgR)-mediated control of axon growth relies on the central nervous system-specific type I transmembrane protein Lingo-1. Interactions between Lingo-1 and NgR, along with a complementary co-receptor, result in neurite and axonal collapse. In addition, the inhibitory role of Lingo-1 is particularly important in regulation of oligodendrocyte differentiation and myelination, suggesting that pharmacological modulation of Lingo-1 function could be a novel approach for nerve repair and remyelination therapies. Here we report on the crystal structure of the ligand-binding ectodomain of human Lingo-1 and show it has a bimodular, kinked structure composed of leucine-rich repeat (LRR) and immunoglobulin (Ig)-like modules. The structure, together with biophysical analysis of its solution properties, reveals that in the crystals and in solution Lingo-1 persistently associates with itself to form a stable tetramer and that it is its LRR-Ig-composite fold that drives such assembly. Specifically, in the crystal structure protomers of Lingo-1 associate in a ring-shaped tetramer, with each LRR domain filling an open cleft in an adjacent protomer. The tetramer buries a large surface area (9,200 A2) and may serve as an efficient scaffold to simultaneously bind and assemble the NgR complex components during activation on a membrane. Potential functional binding sites that can be identified on the ectodomain surface, including the site of self-recognition, suggest a model for protein assembly on the membrane.  相似文献   
967.
Growth differentiation factor 9 (GDF9) is preferentially expressed in oocytes and is essential for female fertility. To identify regulatory elements that confer high-level expression of GDF9 in the ovary but repression in other tissues, we generated transgenic mice in which regions of the Gdf9 locus were fused to reporter genes. Two transgenes (-10.7/+5.6mGdf9-GFP) and (-3.3/+5.6mGdf9-GFP) that contained sequences either 10.7 or 3.3 kb upstream and 5.6 kb downstream of the Gdf9 initiation codon demonstrated expression specifically in oocytes, thereby mimicking endogenous Gdf9 expression. In contrast, transgenes -10.7mGdf9-Luc and -3.3mGdf9-Luc, which lacked the downstream 5.6-kb region, demonstrated reporter expression not only in oocytes but also high expression in male germ cells. This suggests that the downstream 5.6-kb sequence contains a testis-specific repressor element and that 3.3 kb of 5'-flanking sequence contains all the cis-acting elements for directing high expression of Gdf9 to female (and male) germ cells. To define sequences responsible for oocyte expression of Gdf9, we analyzed sequences of Gdf9 genes from 16 mammalian species. The approximately 400 proximal base pairs upstream of these Gdf9 genes are highly conserved and contain a perfectly conserved E-box (CAGCTG) sequence. When this 400-bp region was placed upstream of a luciferase reporter (-0.4mGdf9-Luc), oocyte-specific expression was observed. However, a similar transgene construct (-0.4MUT-mGdf9-Luc) with a mutation in the E-box abolished oocyte expression. Likewise, the presence of an E-box mutation in a longer construct (-3.3MUT-mGdf9-Luc) abolished expression in the ovary but not in the testis. These observations indicate that the E-box is a key regulatory sequence for Gdf9 expression in the ovary.  相似文献   
968.
This article presents theoretical analysis and experimental data for the use of resonant waveguide grating (RWG) biosensors to characterize stimulation-mediated cell responses including signaling. The biosensor is capable of detecting redistribution of cellular contents in both directions that are perpendicular and parallel to the sensor surface. This capability relies on online monitoring cell responses with multiple optical output parameters, including the changes in incident angle and the shape of the resonant peaks. Although the changes in peak shape are mainly contributed to stimulation-modulated inhomogeneous redistribution of cellular contents parallel to the sensor surface, the shift in incident angle primarily reflects the stimulation-triggered dynamic mass redistribution (DMR) perpendicular to the sensor surface. The optical signatures are obtained and used to characterize several cellular processes including cell adhesion and spreading, detachment and signaling by trypsinization, and signaling through either epidermal growth factor receptor or bradykinin B2 receptor. A mathematical model is developed to link the bradykinin-mediated DMR signals to the dynamic relocation of intracellular proteins and the receptor internalization during B2 receptor signaling cycle. This model takes the form of a set of nonlinear, ordinary differential equations that describe the changes in four different states of B2 receptors, diffusion of proteins and receptor-protein complexes, and the DMR responses. Classical analysis shows that the system converges to a unique optical signature, whose dynamics (amplitudes, transition time, and kinetics) is dependent on the bradykinin signal input, and consistent with those observed using the RWG biosensors. This study provides fundamentals for probing living cells with the RWG biosensors, in general, optical biosensors.  相似文献   
969.
970.
In Saccharomyces cerevisiae, the trans-membrane helix of Qcr8p, the ubiquinone binding protein of complex III, contributes to the Q binding site. In wild-type cells, residue 62 of the helix is non-polar (proline). Substitution of proline 62 with a polar, uncharged residue does not impair the ability of the cells to respire, complex III assembly is unaffected, ubiquinone occupancy of the Q binding site is unchanged, and mitochondrial ubiquinone levels are in the wild-type range. Substitution with a +1 charged residue is associated with partial respiratory competence, impaired complex III assembly, and loss of cytochrome b. Although ubiquinone occupancy of the Q binding site is similar to wild-type, total mitochondrial ubiquinone doubled in these mutants. Mutants with a +2 charged substitution at position 62 are unable to respire. These results suggest that the accumulation of ubiquinone in the mitochondria may be a compensatory mechanism for impaired electron transport at cytochrome b.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号