首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7932篇
  免费   751篇
  国内免费   7篇
  2022年   48篇
  2021年   120篇
  2020年   68篇
  2019年   92篇
  2018年   118篇
  2017年   111篇
  2016年   177篇
  2015年   304篇
  2014年   346篇
  2013年   456篇
  2012年   526篇
  2011年   543篇
  2010年   381篇
  2009年   356篇
  2008年   480篇
  2007年   489篇
  2006年   437篇
  2005年   424篇
  2004年   428篇
  2003年   390篇
  2002年   387篇
  2001年   83篇
  2000年   60篇
  1999年   97篇
  1998年   133篇
  1997年   83篇
  1996年   83篇
  1995年   75篇
  1994年   79篇
  1993年   73篇
  1992年   55篇
  1991年   59篇
  1990年   72篇
  1989年   49篇
  1988年   55篇
  1987年   56篇
  1986年   41篇
  1985年   64篇
  1984年   58篇
  1983年   59篇
  1982年   62篇
  1981年   58篇
  1980年   60篇
  1979年   47篇
  1978年   42篇
  1977年   42篇
  1976年   48篇
  1974年   37篇
  1973年   47篇
  1970年   24篇
排序方式: 共有8690条查询结果,搜索用时 15 毫秒
991.
The Fc gamma receptors have been shown to play important roles in the initiation and regulation of many immunological and inflammatory processes and to amplify and refine the immune response to an infection. We have investigated the hypothesis that polymorphism within the FCGR genetic locus is associated with giant cell arteritis (GCA). Biallelic polymorphisms in FCGR2A, FCGR3A, FCGR3B and FCGR2B were examined for association with biopsy-proven GCA (n = 85) and healthy ethnically matched controls (n = 132) in a well-characterised cohort from Lugo, Spain. Haplotype frequencies and linkage disequilibrium (D') were estimated across the FCGR locus and a model-free analysis performed to determine association with GCA. There was a significant association between FCGR2A-131RR homozygosity (odds ratio (OR) 2.10, 95% confidence interval (CI) 1.12 to 3.77, P = 0.02, compared with all others) and carriage of FCGR3A-158F (OR 3.09, 95% CI 1.10 to 8.64, P = 0.03, compared with non-carriers) with susceptibility to GCA. FCGR haplotypes were examined to refine the extent of the association. The haplotype showing the strongest association with GCA susceptibility was the FCGR2A-FCGR3A 131R-158F haplotype (OR 2.84, P = 0.01 for homozygotes compared with all others). There was evidence of a multiplicative joint effect between homozygosity for FCGR2A-131R and HLA-DRB1*04 positivity, consistent with both of these two genetic factors contributing to the risk of disease. The risk of GCA in HLA-DRB1*04 positive individuals homozygous for the FCGR2A-131R allele is increased almost six-fold compared with those with other FCGR2A genotypes who are HLA-DRB1*04 negative. We have demonstrated that FCGR2A may contribute to the 'susceptibility' of GCA in this Spanish population. The increased association observed with a FCGR2A-FCGR3A haplotype suggests the presence of additional genetic polymorphisms in linkage disequilibrium with this haplotype that may contribute to disease susceptibility. These findings may ultimately provide new insights into disease pathogenesis.  相似文献   
992.
A well-defined copolymer poly(oligo(ethylene glycol) methacrylate-co-methacrylic acid) P(OEGMA-co-MAA) was studied as a novel water-soluble biocompatible coating for superparamagnetic iron oxide nanoparticles. This copolymer was prepared via a two-step procedure: a well-defined precursor poly(oligo(ethylene glycol) methacrylate-co-tert-butyl methacrylate), P(OEGMA-co-tBMA) (M(n) = 17300 g mol(-1); M(w)/M(n) = 1.22), was first synthesized by atom-transfer radical polymerization in the presence of the catalyst system copper(I) chloride/2,2'-bipyridyl and subsequently selectively hydrolyzed in acidic conditions. The resulting P(OEGMA-co-MAA) was directly utilized as a polymeric stabilizer in the nanoparticle synthesis. Four batches of ultrasmall PEGylated magnetite nanoparticles (i.e., with an average diameter below 30 nm) were prepared via aqueous coprecipitation of iron salts in the presence of variable amounts of P(OEGMA-co-MAA). The diameter of the nanoparticles could be easily tuned in the range 10-25 nm by varying the initial copolymer concentration. Moreover, the formed PEGylated ferrofluids exhibited a long-term colloidal stability in physiological buffer and could therefore be studied in vivo by magnetic resonance (MR) imaging. Intravenous injection into rats showed no detectable signal in the liver within the first 2 h. Maximum liver accumulation was found after 6 h, suggesting a prolongated circulation of the nanoparticles in the bloodstream as compared to conventional MR imaging contrast agents.  相似文献   
993.
BACKGROUND: Regulation of the major transitions in the cell cycle, such as G1/S, G2/M, and metaphase to anaphase, are increasingly well understood. However, we have a poor understanding of the timing of events within each phase of the cell cycle, such as S phase or early mitosis. Two extreme models of regulation are possible. A "regulator-controlled model" in which the order of events is governed by the activation of a series of cytoplasmic regulators, such as kinases, phosphatases, or proteases; or a "substrate-controlled model" in which temporal regulation is determined by the differential responses of the cellular machinery to a common set of activators. RESULTS: We have tried to distinguish between these two models by examining the timing of both biochemical and morphological events in Xenopus egg extracts during mitosis. Several proteins respond with different delays to the activation of Cdc2. We have found that the timing of phosphorylation is largely unchanged when these proteins are exposed to extracts that have been in mitosis for various periods of time. Similarly, when Xenopus interphase nuclei are added to extracts at different times after the G2/M transition, they undergo all the expected morphological changes in the proper sequence and with very similar kinetics. CONCLUSIONS: Our results suggest that during early mitosis (from prophase to metaphase) the timing of biochemical events (such as phosphorylation) and morphological events (such as structural changes in the nucleus) is at least partly controlled by the responses of the substrates themselves to a common set of signals.  相似文献   
994.
Multivesicular bodies (MVBs) are endosomes or prevacuolar compartments. The lumens of their internal vesicles are thought to be topologically equivalent to cytoplasm and their membranes direct proteins and lipids for degradation. Here, we describe a new MVB function; in certain plant MVBs, the internal vesicles contain lytic enzymes and the surrounding 'soup' is a storage compartment. Separate vesicular pathways deliver proteins to the storage and lytic compartments. Recent data indicate that mammalian secretory lysosomes also have two compartments served by separate vesicular pathways. The formation of separate storage and lytic compartments within MVBs poses problems for membrane organization and topology that have not previously been considered in the literature. We offer a hypothetical model to address these problems.  相似文献   
995.
To explore the hypothesis that aging not only increases breast cancer incidence but also alters breast cancer biology, we correlated patient age and diagnosis with tumor histology, stage and biomarkers independently determined from two different tumor archives: an American collection of approximately 800 paraffin-embedded and immunohistochemically analyzed primary breast cancers, and an European collection of approximately 3000 cryobanked primary breast cancers analyzed by ligand-binding and enzyme immunoassay (EIA). The prognostic biomarkers chosen for comparison represented surrogate measures of tumor: (i). proliferation, growth and genetic instability (mitotic and apoptotic indices, Ki-67/MIB-1-positivity, nuclear grade, p53-positivity), (ii). endocrine-dependence (estrogen receptor (ER), progesterone receptors (PR), pS2, Bcl2), (iii). growth factor receptor-dependence (ErbB2, EGFR/ErbB1), and (iv). angiogenic, invasive and proteolytic potential (uPA, PAI-1, Cathepsin D, VEGF). No biomarker reflecting tumor angiogenic, invasive or proteolytic potential showed a significant correlation with patient age at diagnosis. In contrast, significant inverse correlations (|r|>0.1; P< or =0.05) were observed for all measures of tumor growth and genetic instability as well as growth factor receptor overexpression (ErbB2 or EGFR positivity). Only one marker of endocrine-dependence, ER expression, showed a significant positive correlation with patient age at diagnosis. In summary, these findings support the hypothesis that breast cancer biology is significantly affected by patient age. In particular, breast tumors arising in older patients have slower growth rates, are more likely to be ER-positive, and are less likely to be p53-positive, EGFR-positive or ErbB2-positive.  相似文献   
996.
997.
Type I interferons (IFNs) are a family of cytokines involved in the defense against viral infections that play a key role in the activation of both the innate and adaptive immune system. IFNs both directly and indirectly enhance the capacity of B lymphocytes to respond to viral challenge and produce cytotoxic and neutralizing antibodies. However, prolonged type I IFN exposure is not always beneficial to the host. If not regulated properly IFN can drive autoantibody production as well as other parameters of systemic autoimmune disease. Type I IFNs impact B-cell function through a variety of mechanisms, including effects on receptor engagement, Toll-like receptor expression, cell migration, antigen presentation, cytokine responsiveness, cytokine production, survival, differentiation and class-switch recombination. Type I IFNs are also cytotoxic for a variety of cell types and thereby contribute to the accumulation of cell debris that serves as a potential source for autoantigens. Type I IFN engagement of a variety of accessory cells further promotes B-cell survival and activation, as exemplified by the capacity of type I IFNs to increase the level of B-cell survival factors, such as B lymphocyte stimulator, produced by dendritic cells. Therefore, it is not surprising that the loss of expression of the type I IFN receptor can have dramatic effects on the production of autoantibodies and on the clinical features of systemic autoimmune diseases such as systemic lupus erythematosus.  相似文献   
998.
G protein-coupled receptors (GPCR) play central roles in almost all physiological functions, and mutations in GPCR are responsible for over 30 hereditary diseases associated with loss or gain of receptor function. Gain of function mutants are frequently described as having constitutive activity (CA), that is, they activate effectors in the absence of agonist occupancy. Although many GPCR have mutants with CA, the GnRH receptor (GnRHR) was not, until 2010, associated with any CA mutants. The explanation for the failure to observe CA appears to be that the quality control system of the cell recognizes CA mutants of GnRHR as misfolded and retains them in the endoplasmic reticulum. In the present study, we identified several human (h)GnRHR mutants with substitutions in transmembrane helix 6 (F(272)K, F(272)Q, Y(284)F, C(279)A, and C(279)S) that demonstrate varying levels of CA after being rescued by pharmacoperones from different chemical classes and/or deletion of residue K(191), a modification that increases trafficking to the plasma membrane. The movement of the mutants from the endoplasmic reticulum (unrescued) to the plasma membrane (after rescue) is supported by confocal microscopy. Judging from the receptor-stimulated inositol phosphate production, mutants F(272)K and F(272)Q, after rescue, display the largest level of CA, an amount that is comparable with agonist-stimulated activation. Because mutations in other GPCR are, like the hGnRHR, scrutinized by the quality control system, this general approach may reveal CA in receptor mutants from other systems. A computer model of the hGnRHR and these mutants was used to evaluate the conformation associated with CA.  相似文献   
999.

Background and Scope

Plant responses to the toxic effects of soil contaminants, such as excess metals or organic substances, have been studied mainly at physiological, biochemical and molecular levels, but the influence on root system architecture has received little attention. Nevertheless, the precise position, morphology and extent of roots can influence contaminant uptake. Here, data are discussed that aim to increase the molecular and ecological understanding of the influence of contaminants on root system architecture. Furthermore, the potential of plant-associated bacteria to influence root growth by their growth-promoting and stress-relieving capacities is explored.

Methods

Root growth parameters of Arabidopsis thaliana seedlings grown in vertical agar plates are quantified. Mutants are used in a reverse genetics approach to identify molecular components underlying quantitative changes in root architecture after exposure to excess cadmium, copper or zinc. Plant-associated bacteria are isolated from contaminated environments, genotypically and phenotypically characterized, and used to test plant root growth improvement in the presence of contaminants.

Key Results

The molecular determinants of primary root growth inhibition and effects on lateral root density by cadmium were identified. A vertical split-root system revealed local effects of cadmium and copper on root development. However, systemic effects of zinc exposure on root growth reduced both the avoidance of contaminated areas and colonization of non-contaminated areas. The potential for growth promotion and contaminant degradation of plant-associated bacteria was demonstrated by improved root growth of inoculated plants exposed to 2,4-di-nitro-toluene (DNT) or cadmium.

Conclusions

Knowledge concerning the specific influence of different contaminants on root system architecture and the molecular mechanisms by which this is achieved can be combined with the exploitation of plant-associated bacteria to influence root development and increase plant stress tolerance, which should lead to more optimal root systems for application in phytoremediation or safer biomass production.  相似文献   
1000.
Adenocarcinoma of the pancreas is a significant cause of cancer mortality, and up to 10?% of cases appear to be familial. Heritable genomic copy number variants (CNVs) can modulate gene expression and predispose to disease. Here, we identify candidate predisposition genes for familial pancreatic cancer (FPC) by analyzing germline losses or gains present in one or more high-risk patients and absent in a large control group. A total of 120 FPC cases and 1,194 controls were genotyped on the Affymetrix 500K array, and 36 cases and 2,357 controls were genotyped on the Affymetrix 6.0 array. Detection of CNVs was performed by multiple computational algorithms and partially validated by quantitative PCR. We found no significant difference in the germline CNV profiles of cases and controls. A total of 93 non-redundant FPC-specific CNVs (53 losses and 40 gains) were identified in 50 cases, each CNV present in a single individual. FPC-specific CNVs overlapped the coding region of 88 RefSeq genes. Several of these genes have been reported to be differentially expressed and/or affected by copy number alterations in pancreatic adenocarcinoma. Further investigation in high-risk subjects may elucidate the role of one or more of these genes in genetic predisposition to pancreatic cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号