首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   24篇
  2023年   4篇
  2022年   6篇
  2021年   27篇
  2020年   8篇
  2019年   7篇
  2018年   8篇
  2017年   12篇
  2016年   12篇
  2015年   20篇
  2014年   18篇
  2013年   20篇
  2012年   33篇
  2011年   34篇
  2010年   12篇
  2009年   11篇
  2008年   18篇
  2007年   21篇
  2006年   12篇
  2005年   4篇
  2004年   3篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1980年   1篇
  1977年   1篇
  1974年   2篇
排序方式: 共有317条查询结果,搜索用时 15 毫秒
31.
Four antagonists bacteria namely, Bacillus megaterium MB3, B. subtilis MB14, B. subtilis MB99 and B. amyloliquefaciens MB101 were able to produce chitinase, β-1,3-glucanase and protease in different range with the presence of Rhizoctonia solani cell wall as a carbon source. Amplification of chitinase (chiA) gene of 270 bp and β-1, 3-glucanase gene of 415 bp was given supportive evidence at molecular level of antibiosis. After in vitro screening, all antagonists were tested against R. solani under greenhouse conditions. Root treatment of Bacillus strains showed superior defense during pathogen suppression in terms of chitinase, glucanase, peroxidase, poly phenol oxidase, phenylalanine ammonia-lyase activity and total phenolic content in leaves of tomato. All these enzymes accumulated high in tomato leaves as compared to roots. Pathogenesis-related proteins and defense-related enzymes accumulation was directly correlated with plant protection and greenhouse results indicated that B. amyloliquefaciens MB101- and B. subtilis MB14-treated plants offered 69.76 and 61.51 % disease reductions, respectively, over the infected control. These results established that these organisms have the potential to act as biocontrol agents. This study could be highlighted a mutual importance of liquid formulation of antagonistic Bacillus spp. against root associated sclerotia former pathogen R. solani.  相似文献   
32.
Bacillus spp. has emerged as the most effective alternative to synthetic chemical fungicides. To get a better insight in the antagonistic potential of Bacillus strains, rhizospheric soil samples of healthy tomato plants from Indo-gangetic plain regions of India were analysed. A total of 108 Bacillus strains were obtained from preliminary screening. Potent strains identified on the basis of in vitro antagonistic and biochemical assays were subjected to diversity analysis using 16S-rDNA, BOX and ERIC-PCR. Furthermore, the four best performing antagonistic Bacillus strains under in vitro plant growth promotion and antagonistic assay were selected for pot experiment. In field study, Bacillus amyloliquefaciens MB101 and Bacillus subtilis MB14 showed drastic reduction in disease index by 55.7 and 41.74% with significant elevation in fruit yield up to 220 and 184 qha–1, respectively. The present study was successful in selecting effective Bacillus strains by performing phenotypic and genotypic characterisation of Bacillus strains that can be used as an integral component of integrated disease management of tomato root rot and damping-off.  相似文献   
33.
Gupta A  Wood R  Kaplan R  Bekker LG  Lawn SD 《PloS one》2012,7(3):e34156

Background

Although antiretroviral therapy (ART) is known to be associated with time-dependent reductions in tuberculosis (TB) incidence, the long-term impact of ART on incidence remains imprecisely defined due to limited duration of follow-up and incomplete CD4 cell count recovery in existing studies. We determined TB incidence in a South African ART cohort with up to 8 years of follow-up and stratified rates according to CD4 cell count recovery. We compared these rates with those of HIV-uninfected individuals living in the same community.

Methodology/Principal Findings

Prospectively collected clinical data on patients receiving ART in a community-based cohort in Cape Town were analysed. 1544 patients with a median follow-up of 5.0 years (IQR 2.4–5.8) were included in the analysis. 484 episodes of incident TB (73.6% culture-confirmed) were diagnosed in 424 patients during 6506 person-years (PYs) of follow-up. The TB incidence rate during the first year of ART was 12.4 (95% CI 10.8–14.4) cases/100PYs and decreased to 4.92 (95% CI 3.64–8.62) cases/100PYs between 5 and 8 years of ART. During person-time accrued within CD4 cell strata 0–100, 101–200, 201–300, 301–400, 401–500, 501–700 and ≥700 cells/µL, TB incidence rates (95% CI) were 25.5 (21.6–30.3), 11.2 (9.4–13.5), 7.9 (6.4–9.7), 5.0 (3.9–6.6), 5.1 (3.8–6.8), 4.1 (3.1–5.4) and 2.7 (1.7–4.5) cases/100PYs, respectively. Overall, 75% (95% CI 70.9–78.8) of TB episodes were recurrent cases. Updated CD4 cell count and viral load measurements were independently associated with long-term TB risk. TB rates during person-time accrued in the highest CD4 cell count stratum (>700 cells/µL) were 4.4-fold higher that the rate in HIV uninfected individuals living in the same community (2.7 versus 0.62 cases/100PYs; 95%CI 0.58–0.65).

Conclusions/Significance

TB rates during long-term ART remained substantially greater than rates in the local HIV uninfected populations regardless of duration of ART or attainment of CD4 cell counts exceeding 700 cells/µL.  相似文献   
34.
Forest insects and pathogens are major disturbance agents that have affected millions of hectares in North America in recent decades, implying significant impacts to the carbon (C) cycle. Here, we review and synthesize published studies of the effects of biotic disturbances on forest C cycling in the United States and Canada. Primary productivity in stands was reduced, sometimes considerably, immediately following insect or pathogen attack. After repeated growth reductions caused by some insects or pathogens or a single infestation by some bark beetle species, tree mortality occurred, altering productivity and decomposition. In the years following disturbance, primary productivity in some cases increased rapidly as a result of enhanced growth by surviving vegetation, and in other cases increased slowly because of lower forest regrowth. In the decades following tree mortality, decomposition increased as a result of the large amount of dead organic matter. Net ecosystem productivity decreased immediately following attack, with some studies reporting a switch to a C source to the atmosphere, and increased afterward as the forest regrew and dead organic matter decomposed. Large variability in C cycle responses arose from several factors, including type of insect or pathogen, time since disturbance, number of trees affected, and capacity of remaining vegetation to increase growth rates following outbreak. We identified significant knowledge gaps, including limited understanding of carbon cycle impacts among different biotic disturbance types (particularly pathogens), their impacts at landscape and regional scales, and limited capacity to predict disturbance events and their consequences for carbon cycling. We conclude that biotic disturbances can have major impacts on forest C stocks and fluxes and can be large enough to affect regional C cycling. However, additional research is needed to reduce the uncertainties associated with quantifying biotic disturbance effects on the North American C budget.  相似文献   
35.
Omer A  Prasad CS 《Bioinformation》2012,8(4):170-174
G-protein coupled receptors (GPCRs) are found to be attractive drug targets for the treatment of various neuronal diseases. Allosteric modulators have their role in enhancing or suppressing the effect of glutamate on mGluRs. Structure of mGluR1 was generated with the help of Modeller software by considering human B2-adrenergic GPCR protein as template. Structure of various already known drug molecules were used for similarity search in the ZINC database and a large number of similar molecules were obtained, than filtering of these molecules were done by applying drug features. Molecules were screened by Molegro Virtual Docking program and numbers of novel molecules were generated by using LigBuilder software. Finally 16 novel drug candidates were selected, which were showing better results than the seed molecule and previously known modulators. These results will help in designing and synthesis of better drugs against diseases like Epilepsy and Parkinson's.  相似文献   
36.
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that can infect a wide range of warm-blooded animals including humans. In humans and other intermediate hosts, toxoplasma develops into chronic infection that cannot be eliminated by host's immune response or by currently used drugs. In most cases, chronic infections are largely asymptomatic unless the host becomes immune compromised. Thus, toxoplasma is a global health problem and the situation has become more precarious due to the advent of HIV infections and poor toleration of drugs used to treat toxoplasma infection, having severe side effects and also resistance have been developed to the current generation of drugs. The emergence of these drug resistant varieties of T. gondii has led to a search for novel drug targets. We have performed a comparative analysis of metabolic pathways of the host Homo sapiens and the pathogen T. gondii. The enzymes in the unique pathways of T. gondii, which do not show similarity to any protein from the host, represent attractive potential drug targets. We have listed out 11 such potential drug targets which are playing some important work in more than one pathway. Out of these, one important target is Glutamate dehydrogenase enzyme; it plays crucial part in oxidation reduction, metabolic process and amino acid metabolic process. As this is also present in the targets of tropical diseases of TDR (Tropical disease related Drug) target database and no PDB and MODBASE 3D structural model is available, homology models for Glutamate dehydrogenase enzyme were generated using MODELLER9v6. The model was further explored for the molecular dynamics simulation study with GROMACS, virtual screening and docking studies with suitable inhibitors against the NCI diversity subset molecules from ZINC database, by using AutoDock-Vina. The best ten docking solutions were selected (ZINC01690699, ZINC17465979, ZINC17465983, ZINC18141294_03, ZINC05462670, ZINC01572309, ZINC18055497_01, ZINC18141294, ZINC05462674 and ZINC13152284_01). Further the Complexes were analyzed through LIGPLOT. On the basis of Complex scoring and binding ability it is deciphered that these NCI diversity set II compounds, specifically ZINC01690699 (as it has minimum energy score and one of the highest number of interactions with the active site residue), could be promising inhibitors for T. gondii using Glutamate dehydrogenase as Drug target.  相似文献   
37.
Jain A  Liu R  Xiang YK  Ha T 《Nature protocols》2012,7(3):445-452
This protocol describes a single-molecule pull-down (SiMPull) assay for analyzing physiological protein complexes. The assay combines the conventional pull-down assay with single-molecule total internal reflection fluorescence (TIRF) microscopy and allows the probing of single macromolecular complexes directly from cell or tissue extracts. In this method, antibodies against the protein of interest are immobilized on a passivated microscope slide. When cell extracts are applied, the surface-tethered antibody captures the protein together with its physiological interaction partners. After washing away the unbound components, single-molecule fluorescence microscopy is used to probe the pulled-down proteins. Captured proteins are visualized through genetically encoded fluorescent protein tags or through antibody labeling. Compared with western blot analysis, this ultrasensitive assay requires considerably less time and reagents and provides quantitative data. Furthermore, SiMPull can distinguish between multiple association states of the same protein. SiMPull is generally applicable to proteins from a variety of cellular contexts and to endogenous proteins. Starting with the cell extracts and passivated slides, the assay requires 1.5-2.5 h for data acquisition and analysis.  相似文献   
38.
Stochastic synthesis of a ligand coupled to a nanoparticle results in a distribution of populations with different numbers of ligands per nanoparticle. This distribution was resolved and quantified using HPLC and is in excellent agreement with the ligand/nanoparticle average measured by 1H NMR, gel permeation chromatography (GPC), and potentiometric titration, and yet significantly more disperse than commonly held perceptions of monodispersity. Two statistical models were employed to confirm that the observed heterogeneity is consistent with theoretical expectations.  相似文献   
39.
The HMT3522 progression series of human breast cells have been used to discover how tissue architecture, microenvironment and signaling molecules affect breast cell growth and behaviors. However, much remains to be elucidated about malignant and phenotypic reversion behaviors of the HMT3522-T4-2 cells of this series. We employed a “pan-cell-state” strategy, and analyzed jointly microarray profiles obtained from different state-specific cell populations from this progression and reversion model of the breast cells using a tree-lineage multi-network inference algorithm, Treegl. We found that different breast cell states contain distinct gene networks. The network specific to non-malignant HMT3522-S1 cells is dominated by genes involved in normal processes, whereas the T4-2-specific network is enriched with cancer-related genes. The networks specific to various conditions of the reverted T4-2 cells are enriched with pathways suggestive of compensatory effects, consistent with clinical data showing patient resistance to anticancer drugs. We validated the findings using an external dataset, and showed that aberrant expression values of certain hubs in the identified networks are associated with poor clinical outcomes. Thus, analysis of various reversion conditions (including non-reverted) of HMT3522 cells using Treegl can be a good model system to study drug effects on breast cancer.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号