首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   591篇
  免费   42篇
  2024年   1篇
  2023年   8篇
  2022年   19篇
  2021年   51篇
  2020年   16篇
  2019年   24篇
  2018年   23篇
  2017年   21篇
  2016年   29篇
  2015年   38篇
  2014年   54篇
  2013年   38篇
  2012年   49篇
  2011年   40篇
  2010年   29篇
  2009年   21篇
  2008年   24篇
  2007年   21篇
  2006年   17篇
  2005年   12篇
  2004年   11篇
  2003年   14篇
  2002年   10篇
  2001年   10篇
  2000年   9篇
  1999年   6篇
  1998年   5篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   6篇
  1989年   2篇
  1988年   5篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1966年   1篇
排序方式: 共有633条查询结果,搜索用时 15 毫秒
621.
Crop populations derived from experimental crosses enable the genetic dissection of complex traits and support modern plant breeding. Among these, multi-parent populations now play a central role. By mixing and recombining the genomes of multiple founders, multi-parent populations combine many commonly sought beneficial properties of genetic mapping populations. For example, they have high power and resolution for mapping quantitative trait loci, high genetic diversity and minimal population structure. Many multi-parent populations have been constructed in crop species, and their inbred germplasm and associated phenotypic and genotypic data serve as enduring resources. Their utility has grown from being a tool for mapping quantitative trait loci to a means of providing germplasm for breeding programmes. Genomics approaches, including de novo genome assemblies and gene annotations for the population founders, have allowed the imputation of rich sequence information into the descendent population, expanding the breadth of research and breeding applications of multi-parent populations. Here, we report recent successes from crop multi-parent populations in crops. We also propose an ideal genotypic, phenotypic and germplasm ‘package’ that multi-parent populations should feature to optimise their use as powerful community resources for crop research, development and breeding.Subject terms: Plant genetics, Plant breeding, Agricultural genetics, Quantitative trait

Over recent years, numerous multi-parent populations (MPPs) have been successfully developed in crops (Huang et al. 2015; Cockram and Mackay 2018). MPPs bring together key genomic, phenotypic and germplasm resources to form a platform for research and development. In this review, we examine three themes covering new developments in crop MPP research: (1) we survey the rapidly expanding variety of crop MPPs, explaining how differences in their design and construction affect their power and precision in mapping quantitative trait loci (QTL), on which we provide a brief primer. (2) We review the use of genomic technologies in MPPs, which have proven particularly suitable for gathering dense genomic information across large populations. We make general recommendations for collecting genotypic resources in MPPs. (3) We discuss successful applications of MPPs, particularly where they have been used for breeding and pre-breeding. This includes the identification of QTL, the application of genomic prediction to MPPs, and the direct use of MPP lines as germplasm for varietal release or pre-breeding. These recent developments have shown the potential of MPPs for crop improvement.  相似文献   
622.
Callus induced from immature embryos of wheat cv Kharchia 65 on Murashige and Skoog’s medium containing 2.5 mg l1 2,4-D was maintained In the regenerable state by subculturing every 5-6 weeks on medium supplemented with 2,4-D (2.5 mg l-1) and proline (10 mg l-1). Addition of proline helped maintain morphogenic competence for over four years. The regenerating callus was analysed histologically about one year after first induction. Both somatic embryogenesis and shoot organogenesis were seen in the same callus tissue that contained typical stages of somatic embryoid development and evidence for the de novo shoot bud formation.  相似文献   
623.
International Microbiology - The solfataric soil sediments of the hot springs of Sikkim located at Yume Samdung and Lachen valley were studied for deciphering the bacterial diversity. The main aim...  相似文献   
624.
625.
Heterosis refers to the better performance of cross progeny compared with inbred parents, and its utilization contributes greatly to agricultural production. Several hypotheses have been proposed to explain heterosis mainly including dominance, over-dominance (or pseudo-overdominance) and epistasis. However, systematic dissection and verification of these hypotheses are rarely documented. Here, comparison of heterosis level across different traits showed that the strong heterosis of composite traits (such as yield) could be attributed to the multiplicative effects of moderate heterosis of component traits, whether at the genome or locus level. Yield heterosis was regulated by a complex trait-QTL network that was characterized by obvious centre-periphery structure, hub QTL, complex up/downstream and positive/negative feedback relationships. More importantly, we showed that better-parent heterosis on yield could be produced in a cross of two near-isogenic lines by the pyramiding and complementation of two major heterotic QTL showing partial-dominance on yield components. The causal gene (BnaA9.CYP78A9) of QC14 was identified, and its heterotic effect results from the heterozygous status of a CACTA-like transposable element in its upstream regulatory region, which led to partial dominance at expression and auxin levels, thus resulting in non-additive expression of downstream responsive genes involved in cell cycle and proliferation, eventually leading to the heterosis of cell number. Taken together, the results at the phenotypic, genetic and molecular levels were highly consistent, which demonstrated that the pyramiding effect of heterotic QTL and the multiplicative effect of individual component traits could well explain substantial parts of yield heterosis in oilseed rape. These results provide in-depth insights into the genetic architecture and molecular mechanism of yield heterosis.  相似文献   
626.
In sectors like healthcare and hospitality, it has been realized that fabrics play a pivotal role in transfer of nosocomial infections. However, there is a major gap in drawing correlation between different fibre types and their interaction with microorganisms. Such information is important to formulate guidelines for textile materials for use in these sectors. In the current study, the adherence of four important bacteria, Staphylococcus aureus, Acinetobacter calcoaceticus, Escherichia coli, and Pseudomonas aeruginosa was studied on six different fibre types namely polyester, wool, polypropylene, viscose, silk and cotton. Among these fibres, viscose showed maximum adherence while silk fibres showed the least attachment of bacterial strains. Bacterial adhesion was correlated with the surface characteristics (surface charge, hydrophobicity etc.) of bacteria, and nanoroughness of fibres. Adhesion of these bacteria was tested on five hydrocarbons of different hydrophobicities. E. coli, the weakest biofilm producer, and with the highest surface energy and lowest hydrophobicity amongst the bacteria compared in the study, had the lowest load on all fibres. Scanning electron microscopy revealed non-uniform binding of gram-negative and gram-positive bacteria. Nanoroughness of fibres favored bacterial adhesion. The study showed correlation between surface properties and adherence of bacteria on fibres, with the results being of direct significance to medical and hospitality sectors.Electronic supplementary materialThe online version of this article (10.1007/s12088-020-00903-5) contains supplementary material, which is available to authorized users.  相似文献   
627.
628.
629.
630.
International Journal of Peptide Research and Therapeutics - Antimicrobial peptides (AMPs) are small sized protein molecules which play a crucial role in host inborn immune framework. AMPs with...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号