首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   346篇
  免费   15篇
  2023年   5篇
  2022年   14篇
  2021年   38篇
  2020年   7篇
  2019年   12篇
  2018年   22篇
  2017年   18篇
  2016年   20篇
  2015年   22篇
  2014年   31篇
  2013年   31篇
  2012年   31篇
  2011年   24篇
  2010年   16篇
  2009年   12篇
  2008年   14篇
  2007年   11篇
  2006年   9篇
  2005年   5篇
  2003年   2篇
  2000年   2篇
  1998年   1篇
  1997年   2篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
  1980年   1篇
  1979年   2篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
排序方式: 共有361条查询结果,搜索用时 349 毫秒
181.
Circulating IL-6 levels correlate with the severity of blood-stage malaria in humans and mouse models, but the impact of IL-6 classic signaling through membrane IL-6Rα, as well as IL-6 trans-signaling through soluble IL-6Rα, on the outcome of malaria has remained unknown. In this study, we created IL-6Rα-deficient mice that exhibit a 50% survival of otherwise lethal blood-stage malaria of the genus Plasmodium chabaudi. Inducing IL-6 trans-signaling by injection of mouse recombinant soluble IL-6Rα in IL-6Rα-deficient mice restores the lethal outcome to malaria infection. In contrast, inhibition of IL-6 trans-signaling via injection of recombinant sGP130Fc protein in control mice results in a 40% survival rate. Our data demonstrate that IL-6 trans-signaling, rather than classic IL-6 signaling, contributes to malaria-induced lethality in mice, preceded by an increased inflammatory response. Therefore, inhibition of IL-6 trans-signaling may serve as a novel promising therapeutic basis to combat malaria.  相似文献   
182.
183.
184.
Constitutional deletions of distal 9q34 encompassing the EHMT1 (euchromatic histone methyltransferase 1) gene, or loss-of-function point mutations in EHMT1, are associated with the 9q34.3 microdeletion syndrome, also known as Kleefstra syndrome [MIM#610253]. We now report further evidence for genomic instability of the subtelomeric 9q34.3 region as evidenced by copy number gains of this genomic interval that include duplications, triplications, derivative chromosomes and complex rearrangements. Comparisons between the observed shared clinical features and molecular analyses in 20 subjects suggest that increased dosage of EHMT1 may be responsible for the neurodevelopmental impairment, speech delay, and autism spectrum disorders revealing the dosage sensitivity of yet another chromatin remodeling protein in human disease. Five patients had 9q34 genomic abnormalities resulting in complex deletion–duplication or duplication–triplication rearrangements; such complex triplications were also observed in six other subtelomeric intervals. Based on the specific structure of these complex genomic rearrangements (CGR) a DNA replication mechanism is proposed confirming recent findings in Caenorhabditis elegans telomere healing. The end-replication challenges of subtelomeric genomic intervals may make them particularly prone to rearrangements generated by errors in DNA replication.  相似文献   
185.
The lamin B receptor (LBR) is a highly unusual inner nuclear membrane protein with multiple functions. Reduced levels are associated with decreased neutrophil lobularity, whereas complete absence of LBR results in severe skeletal dysplasia and in utero/perinatal lethality. We describe a mouse pedigree, Lym3, with normal bone marrow and thymic development but profound and progressive lymphopenia particularly within the T cell compartment. This defect arises from a point mutation within the Lbr gene with only trace mutant protein detectable in homozygotes, albeit sufficient for normal development. Reduced T cell homeostatic proliferative potential and life span in vivo were found to contribute to lymphopenia. To investigate the role of LBR in gene silencing in hematopoietic cells, we examined gene expression in wild-type and mutant lymph node CD8 T cells and bone marrow neutrophils. Although LBR deficiency had a very mild impact on gene expression overall, for common genes differentially expressed in both LBR-deficient CD8 T cells and neutrophils, gene upregulation prevailed, supporting a role for LBR in their suppression. In summary, this study demonstrates that LBR deficiency affects not only nuclear architecture but also proliferation, cell viability, and gene expression of hematopoietic cells.  相似文献   
186.
The extreme osmotic conditions prevailing in hypersaline environments result in decreasing metabolic diversity with increasing salinity. Various microbial metabolisms have been shown to occur even at high salinity, including photosynthesis as well as sulfate and nitrate reduction. However, information about anaerobic microbial iron metabolism in hypersaline environments is scarce. We studied the phylogenetic diversity, distribution, and metabolic activity of iron(II)-oxidizing and iron(III)-reducing Bacteria and Archaea in pH-neutral, iron-rich salt lake sediments (Lake Kasin, southern Russia; salinity, 348.6 g liter(-1)) using a combination of culture-dependent and -independent techniques. 16S rRNA gene clone libraries for Bacteria and Archaea revealed a microbial community composition typical for hypersaline sediments. Most-probable-number counts confirmed the presence of 4.26 × 10(2) to 8.32 × 10(3) iron(II)-oxidizing Bacteria and 4.16 × 10(2) to 2.13 × 10(3) iron(III)-reducing microorganisms per gram dry sediment. Microbial iron(III) reduction was detected in the presence of 5 M NaCl, extending the natural habitat boundaries for this important microbial process. Quantitative real-time PCR showed that 16S rRNA gene copy numbers of total Bacteria, total Archaea, and species dominating the iron(III)-reducing enrichment cultures (relatives of Halobaculum gomorrense, Desulfosporosinus lacus, and members of the Bacilli) were highest in an iron oxide-rich sediment layer. Combined with the presented geochemical and mineralogical data, our findings suggest the presence of an active microbial iron cycle at salt concentrations close to the solubility limit of NaCl.  相似文献   
187.
Leishmania is known to elicit Th2 response that causes leishmaniasis progression; on the other hand, Th1 cytokines restricts amastigote growth and disease progression. In this study, we report the potential of two leishmanial antigens (65 and 98?kDa, in combination) which enhance strong macrophage effector functions, viz., production of respiratory burst enzymes, nitric oxide, and Th1 cytokines. The identification of antigens were done by resolving the crude soluble antigens on SDS-PAGE and eluted by reverse staining method. Further, RAW264.7 macrophages were challenged with eluted antigens, and the innate immune response was observed by detecting respiratory burst enzymes, nitric oxide (NOx), TNF-α, IFN-γ, IL-12, toll-like receptors (TLRs) gene expression, and TLR-signaling proteins. These antigens increased the production of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, superoxide dismutase, NOx, TNF-α, IFN-γ, IL-12, TLR2, and p38 mitogen-activated protein kinase. These antigens also induced human peripheral blood mononuclear cells proliferation and Th1 cytokine production. This study concludes that these antigens induce innate immune response as well as have prophylactic efficacy.  相似文献   
188.
Objectives:  Male factors are responsible for about half of all infertility cases. Until recently, testicular biopsy was the standard method to ascertain the aetiology of azoospermia. Fine needle aspiration cytology has gained increasing popularity as a simple and minimally invasive procedure that can help in assessing testicular function accurately. This study was aimed at addressing the question whether testicular fine needle aspiration (FNA) may be used as a first-line diagnostic modality in azoospermia and to assess its usefulness in the diagnostic protocol.
Methods:  The FNA was performed in 78 consecutive azoospermic patients. To obviate sampling errors both testes were aspirated, except when contraindicated. Routine haematoxylin and eosin as well as Romanowsky staining was performed on the smears.
Results:  The smears were categorized on cytological examination into normal spermatogenesis in 35 (50%) patients, Sertoli cells only syndrome in 22 (31.4%) and maturation arrest at the spermatocyte/spermatid level was seen in 13 (18.4%) patients. There were eight (10.2%) cases with scant smears where cytological diagnosis could not be made. A good correlation between cytological smears and histological sections was found in 54 of 58 testes (93.1%) in which histopathological confirmation was available.
Conclusions:  Testicular FNA may be utilized as a first-line investigative modality in patients with azoospermia, provided the procedure is performed and interpreted by experts.  相似文献   
189.
190.
Ralstonia solanacearum causes bacterial wilt disease in many plant species. Type III-secreted effectors (T3Es) play crucial roles in bacterial pathogenesis. However, some T3Es are recognized by corresponding disease resistance proteins and activate plant immunity. In this study, we identified the R. solanacearum T3E protein RipAZ1 (Ralstonia injected protein AZ1) as an avirulence determinant in the black nightshade species Solanum americanum. Based on the S. americanum accession-specific avirulence phenotype of R. solanacearum strain Pe_26, 12 candidate avirulence T3Es were selected for further analysis. Among these candidates, only RipAZ1 induced a cell death response when transiently expressed in a bacterial wilt-resistant S. americanum accession. Furthermore, loss of ripAZ1 in the avirulent R. solanacearum strain Pe_26 resulted in acquired virulence. Our analysis of the natural sequence and functional variation of RipAZ1 demonstrated that the naturally occurring C-terminal truncation results in loss of RipAZ1-triggered cell death. We also show that the 213 amino acid central region of RipAZ1 is sufficient to induce cell death in S. americanum. Finally, we show that RipAZ1 may activate defence in host cell cytoplasm. Taken together, our data indicate that the nucleocytoplasmic T3E RipAZ1 confers R. solanacearum avirulence in S. americanum. Few avirulence genes are known in vascular bacterial phytopathogens and ripAZ1 is the first one in R. solanacearum that is recognized in black nightshades. This work thus opens the way for the identification of disease resistance genes responsible for the specific recognition of RipAZ1, which can be a source of resistance against the devastating bacterial wilt disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号