首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1492篇
  免费   165篇
  2023年   7篇
  2022年   8篇
  2021年   22篇
  2020年   22篇
  2019年   17篇
  2018年   23篇
  2017年   32篇
  2016年   59篇
  2015年   78篇
  2014年   90篇
  2013年   96篇
  2012年   127篇
  2011年   124篇
  2010年   80篇
  2009年   61篇
  2008年   106篇
  2007年   94篇
  2006年   84篇
  2005年   83篇
  2004年   90篇
  2003年   75篇
  2002年   64篇
  2001年   21篇
  2000年   20篇
  1999年   15篇
  1998年   20篇
  1997年   18篇
  1996年   9篇
  1995年   9篇
  1994年   14篇
  1993年   12篇
  1991年   6篇
  1990年   5篇
  1989年   8篇
  1988年   4篇
  1987年   3篇
  1984年   5篇
  1983年   9篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   2篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1972年   3篇
  1970年   2篇
  1969年   3篇
  1968年   3篇
  1965年   2篇
排序方式: 共有1657条查询结果,搜索用时 15 毫秒
961.
Plants deploy chemical defenses in complex mixtures, which are thought to be adaptive, but experimental tests have used artificial diets rather than plants. Herbivore attack on Nicotiana attenuata rapidly increases the production and accumulation of trypsin proteinase inhibitors (TPI) and the toxic alkaloid nicotine. By transgenically silencing their respective biosynthetic genes, we were able to abolish TPI activity and reduce inducible nicotine by 85%. Nicotine production was not affected by silencing pi or vice versa, and transformation did not alter levels of other metabolites examined. Spodoptera exigua , a native generalist herbivore that can compensate for heterologous TPI expression, performed better on TPI- or nicotine-deficient plants compared with the wild-type. Because of a compensatory feeding response to TPI when nicotine is absent, larvae performed better on nicotine-deficient plants than they did on plants silenced in both defenses. The antifeedant toxin, nicotine, prevents this compensatory response. We conclude that N. attenuata counters an insect adaptation with a defensive synergism.  相似文献   
962.
Structure-function relationship of CAP-Gly domains   总被引:1,自引:0,他引:1  
In all eukaryotes, CAP-Gly proteins control important cellular processes. The molecular mechanisms underlying the functions of CAP-Gly domains, however, are still poorly understood. Here we use the complex formed between the CAP-Gly domain of p150(glued) and the C-terminal zinc knuckle of CLIP170 as a model system to explore the structure-function relationship of CAP-Gly-mediated protein interactions. We demonstrate that the conserved GKNDG motif of CAP-Gly domains is responsible for targeting to the C-terminal EEY/F sequence motifs of CLIP170, EB proteins and microtubules. The CAP-Gly-EEY/F interaction is essential for the recruitment of the dynactin complex by CLIP170 and for activation of CLIP170. Our findings define the molecular basis of CAP-Gly domain function, including the tubulin detyrosination-tyrosination cycle. They further establish fundamental roles for the interaction between CAP-Gly proteins and C-terminal EEY/F sequence motifs in regulating complex and dynamic cellular processes.  相似文献   
963.
Waterborne free silver can cause osmo- and ionoregulatory disturbances in freshwater organisms. The effects of a short-term exposure to extracellular Ag+ ions on membrane currents were investigated in voltage-clamped defolliculated Xenopus oocytes. At a holding potential of -60 mV, ionic silver (1 microM Ag+) increased inward currents (=I(Ag)) from -8+/-2 nA to -665+/-41 nA (n=74; N=27). I(Ag) activated within 2 min of silver exposure and then rose impetuously. This current was largely reversible by washout and repeatable. I(Ag) reversed around -30 mV and rectified slightly at more positive potentials. Na+-free bath conditions reduced the silver-induced current to a smaller but sustained current. The response to silver was abolished by the Cl- channel blockers DIDS and SITS, whereas niflumic acid strongly potentiated I(Ag). Intraoocyte injection of AgNO3 to about 1 mM [Ag]i strongly potentiated I(Ag). Extracellular application of either dithiothreitol (DTT), a compound known to reduce disulfide bridges, or L-cysteine abolished Ag+-activated increase of membrane current. In contrast, n-ethylmaleimide (NEM) which oxidizes SH-groups potentiated I(Ag). Hypoosmotic bath solution significantly increased I(Ag) whereas hyperosmolar conditions attenuated I(Ag). The activation of I(Ag) was largely preserved after chelation of cytosolic Ca2+ ions with BAPTA/AM. Taken together, these data suggest that Xenopus oocytes are sensitive to short-term exposure to waterborne Ag+ ions and that the elicited membrane currents result from extra- and intracellular action of Ag+ ions on peptide moieties at the oocyte membrane but may also affect conductances after internalization.  相似文献   
964.
To reduce culture artifacts by conventional repeated passaging and long-term culture in vitro, the isolation of synovial fibroblasts (SFB) was attempted from rheumatoid arthritis (RA) synovial membranes by trypsin/collagenase digest, short-term in vitro adherence (7 days), and negative isolation using magnetobead-coupled anti-CD14 monoclonal antibodies. This method yielded highly enriched SFB (85% prolyl-4-hydroxylase+/74% Thy-1/CD90+ cells; <2% contaminating macrophages; <1% leukocytes/endothelial cells) that, in comparison with conventional fourth-passage RA-SFB, showed a markedly different phenotype and significantly lower proliferation rates upon stimulation with platelet-derived growth factor and IL-1β. This isolation method is simple and reliable, and may yield cells with features closer to the in vivo configuration of RA-SFB by avoiding extended in vitro culture.  相似文献   
965.
Phytases (myo-inositol hexakisphosphate phosphohydrolases) are found naturally in plants and microorganisms, particularly fungi. Interest in these enzymes has been stimulated by the fact that phytase supplements increase the availability of phosphorus in pig and poultry feed and thereby reduce environmental pollution due to excess phosphate excretion in areas where there is intensive livestock production. The wild-type phytases from six different fungi, Aspergillus niger, Aspergillus terreus, Aspergillus fumigatus, Emericella nidulans, Myceliophthora thermophila, and Talaromyces thermophilus, were overexpressed in either filamentous fungi or yeasts and purified, and their biophysical properties were compared with those of a phytase from Escherichia coli. All of the phytases examined are monomeric proteins. While E. coli phytase is a nonglycosylated enzyme, the glycosylation patterns of the fungal phytases proved to be highly variable, differing for individual phytases, for a given phytase produced in different expression systems, and for individual batches of a given phytase produced in a particular expression system. Whereas the extents of glycosylation were moderate when the fungal phytases were expressed in filamentous fungi, they were excessive when the phytases were expressed in yeasts. However, the different extents of glycosylation had no effect on the specific activity, the thermostability, or the refolding properties of individual phytases. When expressed in A. niger, several fungal phytases were susceptible to limited proteolysis by proteases present in the culture supernatant. N-terminal sequencing of the fragments revealed that cleavage invariably occurred at exposed loops on the surface of the molecule. Site-directed mutagenesis of A. fumigatus and E. nidulans phytases at the cleavage sites yielded mutants that were considerably more resistant to proteolytic attack. Therefore, engineering of exposed surface loops may be a strategy for improving phytase stability during feed processing and in the digestive tract.  相似文献   
966.
The role of cyst germination as a factor in bloom initiationwas investigated for the dinoflagellate Scrippsiella hangoei(Schiller) Larsen from the northern Baltic Sea. This speciesblooms in very cold, often ice-covered waters, and is responsiblefor a significant fraction of the production in that region.Dormancy, temperature, oxygen and light were studied as factorspotentially controlling the germination of S.hangoei restingcysts. Laboratory-stored and field-collected cysts began togerminate in December following a mandatory dormancy periodlasting 6 months. Germination after this maturation intervalwas maximal when temperatures were within a 0–9°C‘window’. Mandatory dormancy is therefore the primaryfactor regulating the timing of germination in this species,as temperatures in the natural environment normally fall withinthis range at the time when S.hangoei cysts deposited the precedingyear have matured. Non-optimal temperatures, darkness and lowoxygen conditions all maintain a state of quiescence in thecysts. Cysts could germinate in darkness, but the rate of excystmentwas significantly higher in the light. Likewise, excystmentwas completely inhibited in anoxic conditions and was reducedunder severe hypoxia, with normal germination under moderatehypoxic concentrations. Temporary exposure to high sulfide concentrationspermanently reduced germination potential, indicating that S.hangoeicysts have low resistance to oxygen deficiency. Prolonged periodsof anoxia at the sediment surface, as frequently occurs in thestudy area, might reduce the size of the viable cyst pool andthus, alter the magnitude of the inoculum for S.hangoei bloominitiation. Together, these internal and external regulatoryfactors play important roles in the bloom dynamics of this importantdinoflagellate.  相似文献   
967.
The oxidative theory suggests that LDL oxidation contributes to atherogenesis, implying that attenuation of this process by antioxidants should decrease atherosclerosis. However, a causative link between LDL oxidation and atherogenesis is not firmly established. It requires the identification of the oxidants that are responsible for the initiation of LDL oxidation, and an understanding of the modified moieties that are responsible for the proatherogenic activities of oxidized LDL. The present review summarizes recent data on potential biological oxidants for LDL in the vessel wall, and discusses the antiatherogenic role(s) of selected antioxidants.  相似文献   
968.
A Cameroonian patient with antibodies reacting simultaneously to human immunodeficiency virus type 1 (HIV-1) group O- and group M-specific V3-loop peptides was identified. In order to confirm that this patient was coinfected with both viruses, PCRs with O- and M-specific discriminating primers corresponding to different regions of the genome were carried out with both primary lymphocyte DNA and the corresponding viral strains isolated from three consecutive patient samples. The PCR data suggested that this patient is coinfected with a group M virus and a recombinant M/O virus. Indeed, only type M gag sequences could be amplified, while for the env region, both type M and O sequences were amplified, from plasma or from DNA extracted from primary lymphocytes. Sequence analysis of a complete recombinant genome isolated from the second sample (97CA-MP645 virus isolate) revealed two intergroup breakpoints, one in the vpr gene and the second in the long terminal repeat region around the TATA box. Comparison of the type M sequences shared by the group M and the recombinant M/O viruses showed that these sequences were closely related, with only 3% genetic distance, suggesting that the M virus was one of the parental viruses. In this report we describe for the first time a recombination event in vivo between viruses belonging to two different groups, leading to a replicative virus. Recombination between strains with such distant lineages (65% overall homology) may contribute substantially to the emergence of new HIV-1 variants. We documented that this virus replicates well and became predominant in vitro. At this time, group O viruses represent a minority of the strains responsible for the HIV-1 pandemic. If such recombinant intergroup viruses gained better fitness, inducing changes in their biological properties compared to the parental group O virus, the prevalences of group O sequences could increase rapidly. This will have important implications for diagnosis of HIV-1 infections by serological and molecular tests, as well as for antiviral treatment.  相似文献   
969.
An analysis of siderophores produced by Magnaporthe grisea revealed the presence of one intracellular storage siderophore, ferricrocin, and four coprogen derivatives secreted into the medium under iron depletion. Structural analysis showed that the compounds are coprogen, coprogen B, 2-N-methylcoprogen and 2-N-methylcoprogen B. Siderophore production under low and high iron conditions was quantified.  相似文献   
970.
GacH is the solute binding protein (receptor) of the putative oligosaccharide ATP-binding cassette transporter GacFG, encoded in the acarbose biosynthetic gene cluster (gac) from Streptomyces glaucescens GLA.O. In the context of the proposed function of acarbose (acarviosyl-1,4-maltose) as a ‘carbophor,’ the transporter, in complex with a yet to be identified ATPase subunit, is supposed to mediate the uptake of longer acarbose homologs and acarbose for recycling purposes. Binding assays using isothermal titration calorimetry identified GacH as a maltose/maltodextrin-binding protein with a low affinity for acarbose but with considerable binding activity for its homolog, component 5C (acarviosyl-1,4-maltose-1,4-glucose-1,1-glucose). In contrast, the maltose-binding protein of Salmonella typhimurium (MalE) displays high-affinity acarbose binding. We determined the crystal structures of GacH in complex with acarbose, component 5C, and maltotetraose, as well as in unliganded form. As found for other solute receptors, the polypeptide chain of GacH is folded into two distinct domains (lobes) connected by a hinge, with the interface between the lobes forming the substrate-binding pocket. GacH does not specifically bind the acarviosyl group, but displays specificity for binding of the maltose moiety in the inner part of its binding pocket. The crystal structure of acarbose-loaded MalE showed that two glucose units of acarbose are bound at the same region and position as maltose. A comparative analysis revealed that in GacH, acarbose is buried deeper into the binding pocket than in MalE by exactly one glucose ring shift, resulting in a total of 18 hydrogen-bond interactions versus 21 hydrogen-bond interactions for MalEacarbose. Since the substrate specificity of ATP-binding cassette import systems is determined by the cognate binding protein, our results provide the first biochemical and structural evidence for the proposed role of GacHFG in acarbose metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号