首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1420篇
  免费   162篇
  2023年   5篇
  2022年   6篇
  2021年   20篇
  2020年   22篇
  2019年   16篇
  2018年   21篇
  2017年   30篇
  2016年   58篇
  2015年   77篇
  2014年   86篇
  2013年   91篇
  2012年   123篇
  2011年   119篇
  2010年   77篇
  2009年   58篇
  2008年   105篇
  2007年   90篇
  2006年   81篇
  2005年   81篇
  2004年   91篇
  2003年   75篇
  2002年   62篇
  2001年   17篇
  2000年   13篇
  1999年   15篇
  1998年   19篇
  1997年   17篇
  1996年   9篇
  1995年   9篇
  1994年   13篇
  1993年   11篇
  1992年   2篇
  1991年   6篇
  1990年   4篇
  1989年   8篇
  1988年   4篇
  1987年   3篇
  1984年   5篇
  1983年   9篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1978年   1篇
  1975年   1篇
  1974年   3篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   2篇
  1968年   2篇
排序方式: 共有1582条查询结果,搜索用时 250 毫秒
181.
It is well established that the Nef proteins of human and simian immunodeficiency viruses (HIV and SIV) modulate major histocompatibility complex class I (MHC-I) cell surface expression to protect infected cells against lysis by cytotoxic T lymphocytes (CTLs). Recent data supported the observation that Nef also manipulates CTLs directly by down-modulating CD8αβ (J. A. Leonard, T. Filzen, C. C. Carter, M. Schaefer, and K. L. Collins, J. Virol. 85:6867-6881, 2011), but it remained unknown whether this Nef activity is conserved between different lineages of HIV and SIV. In this study, we examined a total of 42 nef alleles from 16 different primate lentiviruses representing most major lineages of primate lentiviruses, as well as nonpandemic HIV-1 strains and the direct precursors of HIV-1 (SIVcpz and SIVgor). We found that the vast majority of these nef alleles strongly down-modulate CD8β in human T cells. Primate lentiviral Nefs generally interacted specifically with the cytoplasmic tail of CD8β, and down-modulation of this receptor was dependent on the conserved dileucine-based motif and two adjacent acidic residues (DD/E) in the C-terminal flexible loop of SIV Nef proteins. Both of these motifs are known to be important for the interaction of HIV-1 Nef with AP-2, and they were also shown to be critical for down-modulation of CD4 and CD28, but not MHC-I, by SIV Nefs. Our results show that down-modulation of CD4, CD8β, and CD28 involves largely overlapping (but not identical) domains and is most likely dependent on conserved interactions of primate lentiviral Nefs with cellular adaptor proteins. Furthermore, our data demonstrate that Nef-mediated down-modulation of CD8αβ is a fundamental property of primate lentiviruses and suggest that direct manipulation of CD8+ T cells plays a relevant role in viral immune evasion.  相似文献   
182.
We report on a new anti-influenza virus agent, SA-19, a lipophilic glycopeptide derivative consisting of aglycoristocetin coupled to a phenylbenzyl-substituted cyclobutenedione. In Madin-Darby canine kidney cells infected with influenza A/H1N1, A/H3N2, or B virus, SA-19 displayed a 50% antivirally effective concentration of 0.60 μM and a selectivity index (ratio of cytotoxic versus antiviral concentration) of 112. SA-19 was 11-fold more potent than unsubstituted aglycoristocetin and was active in human and nonhuman cell lines. Virus yield at 72 h p.i. was reduced by 3.6 logs at 0.8 μM SA-19. In contrast to amantadine and oseltamivir, SA-19 did not select for resistance upon prolonged virus exposure. SA-19 was shown to inhibit an early postbinding step in virus replication. The compound had no effect on hemagglutinin (HA)-mediated membrane fusion in an HA-polykaryon assay and did not inhibit the low-pH-induced refolding of the HA in a tryptic digestion assay. However, a marked inhibitory effect on the transduction exerted by retroviral pseudoparticles carrying an HA or vesicular stomatitis virus glycoprotein (VSV-G) fusion protein was noted, suggesting that SA-19 targets a cellular factor with a role in influenza virus and VSV entry. Using confocal microscopy with antinucleoprotein staining, SA-19 was proven to completely prevent the influenza virus nuclear entry. This virus arrest was characterized by the formation of cytoplasmic aggregates. SA-19 appeared to disturb the endocytic uptake and trap the influenza virus in vesicles distinct from early, late, or recycling endosomes. The aglycoristocetin derivative SA-19 represents a new class of potent and broad-acting influenza virus inhibitors with potential clinical relevance.  相似文献   
183.
Genome-wide expression profiles of the phytopathogenic actinomycete Clavibacter michiganensis subsp. michiganensis (Cmm) strain NCPPB382 were analyzed using a 70mer oligonucleotide microarray. Cmm causes bacterial wilt and canker of tomato, a systemic disease leading to substantial economic losses worldwide. Global gene expression was monitored in vitro after long- and short-term incubation with tomato homogenate to simulate conditions in planta and in vivo ten days after inoculation of tomatoes. Surprisingly, both in the presence of tomato homogenate and in planta known virulence genes (celA, chpC, ppaA/C) were down-regulated indicating that the encoded extracellular enzymes are dispensable in late infection stages where plant tissue has already been heavily destroyed. In contrast, some genes of the tomA-region which are involved in sugar metabolism showed an enhanced RNA-level after permanent growth in supplemented medium. Therefore, these genes may be important for utilization of plant derived nutrients. In the plant Cmm exhibited an expression profile completely different from that in vitro. Especially, the strong expression of genes of the wco-cluster (extracellular polysaccharide II), 10 genes encoding surface or pilus assembly proteins, and CMM_2382, coding for a putative perforin suggest a possible role of these genes in the plant-pathogenic interaction.  相似文献   
184.
185.
Castellaniella defragrans is a Betaproteobacterium capable of coupling the oxidation of monoterpenes with denitrification. Geraniol dehydrogenase (GeDH) activity was induced during growth with limonene in comparison to growth with acetate. The N-terminal sequence of the purified enzyme directed the cloning of the corresponding open reading frame (ORF), the first bacterial gene for a GeDH (geoA, for geraniol oxidation pathway). The C. defragrans geraniol dehydrogenase is a homodimeric enzyme that affiliates with the zinc-containing benzyl alcohol dehydrogenases in the superfamily of medium-chain-length dehydrogenases/reductases (MDR). The purified enzyme most efficiently catalyzes the oxidation of perillyl alcohol (k(cat)/K(m) = 2.02 × 10(6) M(-1) s(-1)), followed by geraniol (k(cat)/K(m) = 1.57 × 10(6) M(-1) s(-1)). Apparent K(m) values of <10 μM are consistent with an in vivo toxicity of geraniol above 5 μM. In the genetic vicinity of geoA is a putative aldehyde dehydrogenase that was named geoB and identified as a highly abundant protein during growth with phellandrene. Extracts of Escherichia coli expressing geoB demonstrated in vitro a geranial dehydrogenase (GaDH) activity. GaDH activity was independent of coenzyme A. The irreversible formation of geranic acid allows for a metabolic flux from β-myrcene via linalool, geraniol, and geranial to geranic acid.  相似文献   
186.
187.
Protective proteases are key elements of protein quality control pathways that are up-regulated, for example, under various protein folding stresses. These proteases are employed to prevent the accumulation and aggregation of misfolded proteins that can impose severe damage to cells. The high temperature requirement A (HtrA) family of serine proteases has evolved to perform important aspects of ATP-independent protein quality control. So far, however, no HtrA protease is known that degrades protein aggregates. We show here that human HTRA1 degrades aggregated and fibrillar tau, a protein that is critically involved in various neurological disorders. Neuronal cells and patient brains accumulate less tau, neurofibrillary tangles, and neuritic plaques, respectively, when HTRA1 is expressed at elevated levels. Furthermore, HTRA1 mRNA and HTRA1 activity are up-regulated in response to elevated tau concentrations. These data suggest that HTRA1 is performing regulated proteolysis during protein quality control, the implications of which are discussed.  相似文献   
188.
Escherichia coli G3/10 is a component of the probiotic drug Symbioflor 2. In an in vitro assay with human intestinal epithelial cells, E. coli G3/10 is capable of suppressing adherence of enteropathogenic E. coli E2348/69. In this study, we demonstrate that a completely novel class II microcin, produced by probiotic E. coli G3/10, is responsible for this behavior. We named this antibacterial peptide microcin S (MccS). Microcin S is coded on a 50.6 kb megaplasmid of E. coli G3/10, which we have completely sequenced and annotated. The microcin S operon is about 4.7 kb in size and is comprised of four genes. Subcloning of the genes and gene fragments followed by gene expression experiments enabled us to functionally characterize all members of this operon, and to clearly identify the nucleotide sequences encoding the microcin itself (mcsS), its transport apparatus and the gene mcsI conferring self immunity against microcin S. Overexpression of cloned mcsI antagonizes MccS activity, thus protecting indicator strain E. coli E2348/69 in the in vitro adherence assay. Moreover, growth of E. coli transformed with a plasmid containing mcsS under control of an araC PBAD activator-promoter is inhibited upon mcsS induction. Our data provide further mechanistic insight into the probiotic behavior of E. coli G3/10.  相似文献   
189.

Background

Fundamental to vaccine development, manufacturing consistency, and product stability is an understanding of the vaccine structure-activity relationship. With the virus-like particle (VLP) approach for recombinant vaccines gaining popularity, there is growing demand for tools that define their key characteristics. We assessed a suite of non-intrusive VLP epitope structure and function characterization tools by application to the Hepatitis B surface antigen (rHBsAg) VLP-based vaccine.

Methodology

The epitope-specific immune reactivity of rHBsAg epitopes to a given monoclonal antibody was monitored by surface plasmon resonance (SPR) and quantitatively analyzed on rHBsAg VLPs in-solution or bound to adjuvant with a competitive enzyme-linked immunosorbent assay (ELISA). The structure of recombinant rHBsAg particles was examined by cryo transmission electron microscopy (cryoTEM) and in-solution atomic force microscopy (AFM).

Principal Findings

SPR and competitive ELISA determined relative antigenicity in solution, in real time, with rapid turn-around, and without the need of dissolving the particulate aluminum based adjuvant. These methods demonstrated the nature of the clinically relevant epitopes of HBsAg as being responsive to heat and/or redox treatment. In-solution AFM and cryoTEM determined vaccine particle size distribution, shape, and morphology. Redox-treated rHBsAg enabled 3D reconstruction from CryoTEM images – confirming the previously proposed octahedral structure and the established lipid-to-protein ratio of HBsAg particles. Results from these non-intrusive biophysical and immunochemical analyses coalesced into a comprehensive understanding of rHBsAg vaccine epitope structure and function that was important for assuring the desired epitope formation, determinants for vaccine potency, and particle stability during vaccine design, development, and manufacturing.

Significance

Together, the methods presented here comprise a novel suite of non-intrusive VLP structural and functional characterization tools for recombinant vaccines. Key VLP structural features were defined and epitope-specific antigenicity was quantified while preserving epitope integrity and particle morphology. These tools should facilitate the development of other VLP-based vaccines.  相似文献   
190.
HLA-A2 protects from EBV+ classical Hodgkin lymphoma (cHL) in Western Europe, but it is unknown whether this protective effect also exists in the Chinese population. We investigated the association of HLA-A2 and specific common and well documented HLA-A2 subtypes with EBV stratified cHL patients (n = 161) from the northern part of China. Quantitative-PCR and sequence-based subtyping was performed to identify HLA-A2 positive samples and their subtypes. 67 (42%) of the cHL patients were EBV+. There were no significant differences in percentages of HLA-A2 positivity between cHL and controls (65% vs 66%) and between EBV+ and EBV− cHL patients (70% vs 61%). The frequency distribution of HLA-A2 subtypes was significantly different between EBV stratified cHL subgroups and controls. This difference was most striking for the HLA-A*02:07 type with a frequency of 38% in EBV+ cHL, 8% in EBV− cHL and 20% in controls. Significant differences were also observed for the HLA-A*02:07, HLA-A2 (non-02:07) and the A2-negative typings between EBV+ cHL vs controls (p = 0.028), EBV− cHL vs controls (p = 0.045) and EBV+ vs EBV− cHL cases (p = 2×10−5). In conclusion, HLA-A*02:07 is a predisposing allele for EBV+ cHL and a protective allele for EBV− cHL in the northern Chinese population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号