首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1834篇
  免费   178篇
  2022年   9篇
  2021年   24篇
  2020年   26篇
  2019年   16篇
  2018年   25篇
  2017年   31篇
  2016年   71篇
  2015年   79篇
  2014年   96篇
  2013年   106篇
  2012年   135篇
  2011年   134篇
  2010年   89篇
  2009年   66篇
  2008年   116篇
  2007年   99篇
  2006年   85篇
  2005年   88篇
  2004年   100篇
  2003年   80篇
  2002年   70篇
  2001年   23篇
  2000年   29篇
  1999年   21篇
  1998年   26篇
  1997年   24篇
  1996年   16篇
  1995年   13篇
  1994年   24篇
  1993年   15篇
  1991年   11篇
  1990年   10篇
  1989年   17篇
  1988年   11篇
  1986年   9篇
  1984年   7篇
  1983年   16篇
  1982年   10篇
  1981年   7篇
  1970年   5篇
  1956年   5篇
  1955年   7篇
  1953年   8篇
  1952年   6篇
  1940年   6篇
  1933年   5篇
  1932年   7篇
  1930年   7篇
  1929年   7篇
  1926年   10篇
排序方式: 共有2012条查询结果,搜索用时 796 毫秒
41.
1. The isolation of F0F1-ATPase complex from Rhodospirillum rubrum chromatophores by the use of taurodeoxycholate is described. 2. The enzyme preparation contains about 12 polypeptides; five are subunits of the F1 moiety. 3. The ATPase activity of the purified enzyme is dependent on the addition of phospholipids. 4. Km-vales for Mg2+-ATP and Ca2+-ATP are similar to the values obtained for the membrane-bound enzyme. 5. The F0F1-ATPase complex is more than 70% inhibited by oligomycin and N,N'-dicyclohexylcarbodiimide. 6. The F0F1-ATPase complex was integrated into liposomes. The reconstituted proteoliposomes catalyzed energy transduction as shown by ATP-dependent quenching of acridine dye fluorescence and ATP-32Pi exchange.  相似文献   
42.
The ATP synthetase of Escherichia coli K12 was purified by a simple procedure. The dicyclohexylcarbodiimide-sensitive ATPase activity was enriched 21-fold. The ATP synthetase preparation contained the eight polypeptides (alpha, beta, gamma, a,delta, b,espilon, c) of the enzyme and a residual contamination (4% of the total protein) as shown by dodecylsulfate/polyacrylamide electrophoresis. The polypeptide c was specifically labelled with [14C]dicyclohexylcarbodiimide. Energy-transducing activities were reconstituted from soybean phospholipids and the purified enzyme. The proteoliposomes exhibited a significantly higher ATP-32Pi exchange activity and a higher proton-translocating activity as compared to the untreated membranes.  相似文献   
43.
Oxidative phosphorylation, ATP-32Pi exchange, ATP-dependent quenching of acridine-dye fluorescence, ATP-dependent transhydrogenase and ATP-dependent transport of thiomethyl beta-D-galactoside are shown to be experimentally equivalent tools to study the functional state of the ATPase complex in Escherichia coli wild-type and mutant strains defective in oxidative phosphorylation. According to these criteria ten mutants in the ATPase complex were classified having lesions in the unc A,B region of the chromosome. The first mutant type lacks ATPase activity, but the membrane-integrated part of the complex remains functional (class I). The second mutant type lacks a functional membrane-integrated part, but retains ATPase activity (class II). The third mutant type is shown to be defective in both parts of the ATPase complex (class III).  相似文献   
44.
45.
46.
Many retired coal miners who are eligible for care in a black lung treatment enter at little or no cost to themselves do not enter into available programs or discontinue soon after beginning therapy. Reasons for this behavior are related to the prevalent beliefs among Appalachians concerning the course of black lung and the appropriate treatment for it. The miners' health beliefs are clearly at odds with those of the health care providers who work in the centers. Using the concept of explanatory model, popular and professional health cultures are analyzed, focusing on course of disease, sick role, appropriate treatment, and expected outcome. Differences in explanatory models are discussed with regard to implications for the organization and delivery of care to retired coal miners with black lung.  相似文献   
47.
48.
The decline in DNA repair capacity contributes to the age‐associated decrease in genome integrity in somatic cells of different species. However, due to the lack of clinical samples and appropriate tools for studying DNA repair, whether and how age‐associated changes in DNA repair result in a loss of genome integrity of human adult stem cells remains incompletely characterized. Here, we isolated 20 eyelid adipose‐derived stem cell (ADSC) lines from healthy individuals (young: 10 donors with ages ranging 17–25 years; old: 10 donors with ages ranging 50–59 years). Using these cell lines, we systematically compared the efficiency of base excision repair (BER) and two DNA double‐strand break (DSB) repair pathways—nonhomologous end joining (NHEJ) and homologous recombination (HR)—between the young and old groups. Surprisingly, we found that the efficiency of BER but not NHEJ or HR is impaired in aged human ADSCs, which is in contrast to previous findings that DSB repair declines with age in human fibroblasts. We also demonstrated that BER efficiency is negatively associated with tail moment, which reflects a loss of genome integrity in human ADSCs. Mechanistic studies indicated that at the protein level XRCC1, but not other BER factors, exhibited age‐associated decline. Overexpression of XRCC1 reversed the decline of BER efficiency and genome integrity, indicating that XRCC1 is a potential therapeutic target for stabilizing genomes in aged ADSCs.  相似文献   
49.
Input–output analysis is one of the central methodological pillars of industrial ecology. However, the literature that discusses different structures of environmental extensions (EEs), that is, the scope of physical flows and their attribution to sectors in the monetary input–output table (MIOT), remains fragmented. This article investigates the conceptual and empirical implications of applying two different but frequently used designs of EEs, using the case of energy accounting, where one represents energy supply while the other energy use in the economy. We derive both extensions from an official energy supply–use dataset and apply them to the same single‐region input–output (SRIO) model of Austria, thereby isolating the effect that stems from the decision for the extension design. We also crosscheck the SRIO results with energy footprints from the global multi‐regional input–output (GMRIO) dataset EXIOBASE. Our results show that the ranking of footprints of final demand categories (e.g., household and export) is sensitive to the extension design and that product‐level results can vary by several orders of magnitude. The GMRIO‐based comparison further reveals that for a few countries the supply‐extension result can be twice the size of the use‐extension footprint (e.g., Australia and Norway). We propose a graph approach to provide a generalized framework to disclosing the design of EEs. We discuss the conceptual differences between the two extension designs by applying analogies to hybrid life‐cycle assessment and conclude that our findings are relevant for monitoring of energy efficiency and emission reduction targets and corporate footprint accounting.  相似文献   
50.
Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号