首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1863篇
  免费   196篇
  2059篇
  2023年   7篇
  2022年   12篇
  2021年   25篇
  2020年   33篇
  2019年   24篇
  2018年   30篇
  2017年   32篇
  2016年   82篇
  2015年   93篇
  2014年   106篇
  2013年   117篇
  2012年   138篇
  2011年   134篇
  2010年   102篇
  2009年   72篇
  2008年   125篇
  2007年   104篇
  2006年   99篇
  2005年   95篇
  2004年   113篇
  2003年   84篇
  2002年   72篇
  2001年   27篇
  2000年   23篇
  1999年   20篇
  1998年   24篇
  1997年   24篇
  1996年   13篇
  1995年   10篇
  1994年   15篇
  1993年   13篇
  1992年   6篇
  1991年   15篇
  1990年   14篇
  1989年   12篇
  1988年   9篇
  1987年   5篇
  1986年   7篇
  1985年   6篇
  1984年   8篇
  1983年   9篇
  1982年   7篇
  1981年   8篇
  1980年   12篇
  1979年   7篇
  1978年   9篇
  1975年   4篇
  1974年   9篇
  1973年   12篇
  1971年   5篇
排序方式: 共有2059条查询结果,搜索用时 15 毫秒
71.
Proteolytic processing of amyloid-β precursor protein (APP) by beta-site APP cleaving enzyme 1 (BACE1) is the initial step in the production of amyloid beta (Aβ), which accumulates in senile plaques in Alzheimer’s disease (AD). Essential for this cleavage is the transport and sorting of both proteins through endosomal/Golgi compartments. Golgi-localized γ-ear-containing ARF-binding (GGA) proteins have striking cargo-sorting functions in these pathways. Recently, GGA1 and GGA3 were shown to interact with BACE1, to be expressed in neurons, and to be decreased in AD brain, whereas little is known about GGA2. Since GGA1 impacts Aβ generation by confining APP to the Golgi and perinuclear compartments, we tested whether all GGAs modulate BACE1 and APP transport and processing. We observed decreased levels of secreted APP alpha (sAPPα), sAPPβ, and Aβ upon GGA overexpression, which could be reverted by knockdown. GGA-BACE1 co-immunoprecipitation was impaired upon GGA-GAE but not VHS domain deletion. Autoinhibition of the GGA1-VHS domain was irrelevant for BACE1 interaction. Our data suggest that all three GGAs affect APP processing via the GGA-GAE domain.  相似文献   
72.
73.
The involvement of the Nuclear distribution element-like (Ndel1; Nudel) protein in the recruitment of the dynein complex is critical for neurodevelopment and potentially important for neuronal disease states. The PDE4 family of phosphodiesterases specifically degrades cAMP, an important second messenger implicated in learning and memory functions. Here we show for the first time that Ndel1 can interact directly with PDE4 family members and that the interaction of Ndel1 with the PDE4D3 isoform is uniquely disrupted by elevation of intracellular cAMP levels. While all long PDE4 isoforms are subject to stimulatory PKA phosphorylation within their conserved regulatory UCR1 domain, specificity for release of PDE4D3 is conferred due to the PKA-dependent phosphorylation of Ser13 within the isoform-specific, unique amino-terminal domain of PDE4D3. Scanning peptide array analyses identify a common region on Ndel1 for PDE4 binding and an additional region that is unique to PDE4D3. The common site lies within the stutter region that links the second coiled-coil region to the unstable third coiled-coil regions of Ndel1. The additional binding region unique to PDE4D3 penetrates into the start of the third coiled-coil region that can undergo tail-to-tail interactions between Ndel1 dimers to form a 4 helix bundle. We demonstrate Ndel1 self-interaction in living cells using a BRET approach with luciferase- and GFP-tagged forms of Ndel1. BRET assessed Ndel1–Ndel1 self-interaction is amplified through the binding of PDE4 isoforms. For PDE4D3 this effect is ablated upon elevation of intracellular cAMP due to PKA-mediated phosphorylation at Ser13, while the potentiating effects of PDE4B1 and PDE4D5 are resistant to cAMP elevation. PDE4D long isoforms and Ndel1 show a similar sub-cellular distribution in hippocampus and cortex and locate to post-synaptic densities. We show that Ndel1 sequesters EPAC, but not PKA, in order to form a cAMP signalling complex. We propose that a key function of the Ndel1 signalling scaffold is to signal through cAMP by sequestering EPAC, whose activity may thus be specifically regulated by sequestered PDE4 that also stabilizes Ndel1–Ndel1 self-interaction. In the case of PDE4D3, its association with Ndel1 is dynamically regulated by PKA input through its ability to phosphorylate Ser13 in the unique N-terminal region of this isoform, triggering the specific release of PDE4D3 from Ndel1 when cAMP levels are elevated. We propose that Ser13 may act as a redistribution trigger in PDE4D3, allowing it to dynamically re-shape cAMP gradients in distinct intracellular locales upon its phosphorylation by PKA.  相似文献   
74.
Extreme drought events challenge ecosystem functioning. Ecological response to drought is studied worldwide in a growing number of field experiments by rain-out shelters. Yet, few meta-analyses face severe challenges in the comparability of studies. This is partly because build-up of drought stress in rain-out shelters is modified by ambient weather conditions. Rain-out shelters can further create confounding effects (radiation, temperature), which may influence plant responses. Yet, a quantification of ecophysiological effects within rain-out shelters under opposing ambient weather conditions and of microclimatological artifacts is missing. Here, we examined phytometers—standardized potted individuals of Plantago lanceolata—under rain-out shelter, rain-out shelter artifact control, and ambient control during opposing outside microclimatological conditions. Furthermore, we tested for artifacts of rain-out shelters on plant responses in a long-term semi-natural grassland experiment. Phytometer plants below the rain-out shelters showed lower stomatal conductance, maximum quantum efficiency, and leaf water potential during warm ambient conditions with high evaporative demand than during cold conditions with low evaporative demand. Plant performance was highly correlated with ambient temperature and vapor pressure deficit (VPD). Rain-out shelter artifacts on plant responses were nonsignificant. Rain-out shelters remain a viable tool for studying ecosystem responses to drought. However, drought manipulations using rain-out shelters are strongly modified by ambient weather conditions. Attributing the results from rain-out shelter studies to drought effects and comparability among studies and study years therefore requires the quantification of the realized drought stress, for example, by relating ecosystem responses to measured microclimatological parameters such as air temperature and VPD.  相似文献   
75.
Four widely used bubble oxygenators-the Optiflo I, the Bentley Q 200 A, the Harvey 200, and the Shiley 100 A-were tested and compared in 182 patients undergoing cardiac valve surgery. Fifty-six cases were performed with normothermia and 126 cases incorporated mild hypothermia (28-30 degrees C). There was no significant difference in the average age of the patients (51 yrs) or the perfusion time (60 min). All components of the extracorporeal circuit were identical, and anesthetic regimens and surgical techniques were also similar. In this study, the Shiley 100 A oxygenator was found to be the most suitable for cases requiring mild hypothermia and was generally considered to be the oxygenator of choice.  相似文献   
76.
From the mycelia of Aspergillus cristatus the following anthraquionic pigments were isolated: catenarin, emodin, erythroglaucin, rubrocristin, physcion, physcion-9-anthrone, questin, viocristin, and isoviocristin. The latter two do not belong to the 9, 10-anthraquinone series but to the 1,4-anthraquinones, and so far they have not been reported among naturally occurring quinones.Emodin, catenarin, viocristin, and isoviocristin snowed antibacterial activity with minimal inhibitory concentrations ranging from 1–10 g/ml. In Bacillus brevis catenarin and emodin inhibited the incorporation of uracil and leucine preferentially. At higher concentrations the incorporation of thymidine into the trichloroacetic acid-precipitable fraction of cells was also affected. In the presence of viocristin or isoviocristin all three macromolecular syntheses came to a halt. Rubrocristin, erythroglaucin, and physcion showed no significant inhibitory effects.In Ehrlich ascites carcinoma cells catenarin, emodin, and viocristin inhibited the incorporation of uridine and thymidine. The incorporation of leucine was hardly affected.In vitro, inhibition of DNA-dependent RNA polymerase from Escherichia coli by catenarin and to a lesser extent by emodin was observed, whereas rubrocristin (catenarin-8-methyl ether), physcion, and erythroglaucin were not active.Abbreviations MIC minimal inhibitory concentration - TCA trichloroacetic acid - ECA Ehrlich ascites carcinoma Metabolic Products of Microorganisms. 191. W. Keller-Schierlein und B. Joos; Über das 4-Oxohomotyrosin, ein Abbauprodukt des Echinocandins. Helv. Chim. Acta (in press)  相似文献   
77.
Vogel R  Siebert F 《Biochemistry》2002,41(11):3536-3545
We studied the stability and pH-induced denaturation of rhodopsin and its photoproducts as a model for alpha-helical membrane proteins. The increased stability of the dark state of rhodopsin as compared to its photoproduct states allows the initiation of unfolding of the protein by light-dependent isomerization of the chromophore. We could therefore characterize the transition from the native to either acid or alkaline denatured states by light-induced Fourier transform infrared difference spectroscopy, UV-visible spectroscopy, and intrinsic tryptophan fluorescence spectroscopy. The results indicate a loss of important tertiary interactions within the protein and between the protein and the retinal chromophore in the denatured state, despite that the secondary structure of the protein is almost fully retained during the transition. We therefore propose that in this denatured state the protein adopts the conformation of a loose bundle of preserved, but only weakly interacting, transmembrane helices with a largely des-oriented and partly solvent-exposed chromophore. We further characterized the influence of salts on the stability of the rhodopsin helix bundle, which was found to follow the Hofmeister series. We found that the effect of sodium chloride may be stabilizing or destabilizing, depending on the intrinsic stability of the examined protein conformation and on salt concentration. In particular, sodium chloride is shown to counteract the formation of the denatured loose bundle state presumably by increasing the lateral pressure on the helix bundle, thereby stabilizing native-like tertiary contacts within the protein.  相似文献   
78.
Soil degradation is a worsening global phenomenon driven by socio‐economic pressures, poor land management practices and climate change. A deterioration of soil structure at timescales ranging from seconds to centuries is implicated in most forms of soil degradation including the depletion of nutrients and organic matter, erosion and compaction. New soil–crop models that could account for soil structure dynamics at decadal to centennial timescales would provide insights into the relative importance of the various underlying physical (e.g. tillage, traffic compaction, swell/shrink and freeze/thaw) and biological (e.g. plant root growth, soil microbial and faunal activity) mechanisms, their impacts on soil hydrological processes and plant growth, as well as the relevant timescales of soil degradation and recovery. However, the development of such a model remains a challenge due to the enormous complexity of the interactions in the soil–plant system. In this paper, we focus on the impacts of biological processes on soil structure dynamics, especially the growth of plant roots and the activity of soil fauna and microorganisms. We first define what we mean by soil structure and then review current understanding of how these biological agents impact soil structure. We then develop a new framework for modelling soil structure dynamics, which is designed to be compatible with soil–crop models that operate at the soil profile scale and for long temporal scales (i.e. decades, centuries). We illustrate the modelling concept with a case study on the role of root growth and earthworm bioturbation in restoring the structure of a severely compacted soil.  相似文献   
79.
The PKN (protein kinase N) family of Ser/Thr protein kinases regulates a diverse set of cellular functions, such as cell migration and cytoskeletal organization. Inhibition of tumour PKN activity has been explored as an oncology therapeutic approach, with a PKN3-targeted RNAi (RNA interference)-derived therapeutic agent in Phase I clinical trials. To better understand this important family of kinases, we performed detailed enzymatic characterization, determining the kinetic mechanism and lipid sensitivity of each PKN isoform using full-length enzymes and synthetic peptide substrate. Steady-state kinetic analysis revealed that PKN1–3 follows a sequential ordered Bi–Bi kinetic mechanism, where peptide substrate binding is preceded by ATP binding. This kinetic mechanism was confirmed by additional kinetic studies for product inhibition and affinity of small molecule inhibitors. The known lipid effector, arachidonic acid, increased the catalytic efficiency of each isoform, mainly through an increase in kcat for PKN1 and PKN2, and a decrease in peptide KM for PKN3. In addition, a number of PKN inhibitors with various degrees of isoform selectivity, including potent (Ki<10 nM) and selective PKN3 inhibitors, were identified by testing commercial libraries of small molecule kinase inhibitors. This study provides a kinetic framework and useful chemical probes for understanding PKN biology and the discovery of isoform-selective PKN-targeted inhibitors.  相似文献   
80.
The development of the autonomic ganglia of Auerbach's plexus and gizzard smooth muscle was studied in chicken embryos. Nervous system and smooth-muscle-specific antibodies were employed in immunofluorescence stainings on tissue sections to investigate the temporal and spatial frame of neural and muscular differentiation in relation to each other. Subserosal clusters of neural cells were clearly demonstrable at embryonic day 5 (ED5), the earliest stage analysed, with the monoclonal antibody El (SGIII-1). Fine nerve fibres (ED6) and, later, large axon bundles projecting from subserosal neuron clusters towards the lumen were followed and found to reach the luminal border by ED11. Already in early development the area of the future laminar tendons on the ventral and dorsal surface of the gizzard was devoid of neuroblasts, and nerve fibres were not extending to the muscle-tendon borderline until ED16. Double stainings with antibodies to smooth muscle myosin (SMM) and El revealed that SMM expression, taken as an indicator for muscle differentiation, followed neural growth. It was first detectable in close apposition to the differentiating neuroblasts in the caudal and cranial portion of the gizzard at ED6. With further development, myosin expression proceeded inward towards the lumen in a wave which followed the ingrowth of E1-positive nerve fibres from the prospective Auerbach plexus. Neuromuscular differentiation deviated from this pattern in the lateral tendon area where nerve growth was delayed and myosin expression preceeded the arrival of E1-positive nerve fibres. The findings suggest that the gizzard could serve as a model system for the analysis of potential early nervous system imprints on smooth premuscle mesenchyme differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号