首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   16篇
  2023年   3篇
  2022年   13篇
  2021年   30篇
  2020年   7篇
  2019年   18篇
  2018年   12篇
  2017年   7篇
  2016年   12篇
  2015年   17篇
  2014年   19篇
  2013年   20篇
  2012年   19篇
  2011年   23篇
  2010年   12篇
  2009年   13篇
  2008年   16篇
  2007年   14篇
  2006年   12篇
  2005年   12篇
  2004年   6篇
  2003年   8篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1991年   3篇
  1989年   1篇
  1985年   1篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
排序方式: 共有326条查询结果,搜索用时 15 毫秒
301.
Trace heavy metals such as Cr(III), Ni(II), Cd(II), Zn(II), Pb(II), and Cu(II) are hazardous pollutants and are rich in areas with high anthropogenic activities. Their concentrations were analyzed using atomic absorption spectroscopy, and it was found that their concentrations were several fold higher in downstream Swan River water samples of the Kahuta Industrial Triangle as compared to upstream. Heavy metal soil concentrations taken from the downstream site were 149% for Cr, 131% for Ni, 176% for Cd, 139% for Zn, 224% for Pb, and 182% for Cu when compared to samples from the upstream site. Quantitative analysis concluded that these metals were higher in milk samples collected from downstream as compared to the samples from upstream water-irrigated sites. The order of metal in milk was as Zn > Cr > Cu > Cd > Pb = Ni. Heavy metal contaminations may affect the drinking water quality, food chain, and ecological environment. It was also suggested that the toxicity due to such polluted water, soil, and milk are seriously dangerous to human health in future.  相似文献   
302.
O6-methylguanine-DNA methyltransferase (MGMT) is one of the major DNA repair protein that counteracts the alkalyting agent-induced DNA damage by replacing O6-methylguanine (mutagenic lesion) back to guanine, eventually suppressing the mismatch errors and double strand crosslinks. Exonic alterations in the form of nucleotide polymorphism may result in altered protein structure that in turn can lead to the loss of function. In the present study, we focused on the population feared for high exposure to alkylating agents owing to their typical and specialized dietary habits. To this end, gastric cancer patients pooled out from the population were selected for the mutational screening of a specific error prone region of MGMT gene. We found that nearly 40% of the studied neoplastic samples harbored missense mutation at codon151 resulting into Serine to Isoleucine variation. This variation resulted in bringing about the structural disorder, subsequently ensuing into a major stoichiometric variance in recognition domain, substrate binding and selectivity loop of the active site of the MGMT protein, as observed under virtual microscope of molecular dynamics simulation (MDS). The atomic insight into MGMT protein by computational approach showed a significant change in the intra molecular hydrogen bond pattern, thus leading to the observed structural anomalies. To further examine the mutational implications on regulatory plugs of MGMT that holds the protein in a DNA-Binding position, a MDS based analysis was carried out on, all known physically interacting amino acids essentially clustered into groups based on their position and function. The results generated by physical-functional clustering of protein indicated that the identified mutation in the vicinity of the active site of MGMT protein causes the local and global destabilization of a protein by either eliminating the stabilizing salt bridges in cluster C3, C4, and C5 or by locally destabilizing the “protein stabilizing hing” mapped on C3-C4 cluster, preceding the active site.  相似文献   
303.
Municipal effluent of three rural settings of Islamabad was assessed for physicochemical and microbiological parameters by collecting wastewater from inlet and center of ponds. Results showed that water quality was comparatively better at the center as Typha latifolia plants were growing toward the center of ponds. In another study, the wastewater treatment ability of T. latifolia was investigated by growing them in industrial and municipal effluent under greenhouse conditions. Water and plant samples were collected periodically (3rd, 10th, 17th, 24th, and 31st day after transplanting) for the measurement of Pb, Cu, and Cd concentrations. A decrease in heavy metal concentration of both effluents was observed as the experiment progressed and metal removal percentages ranged between 81% and 96%. Complementary the increase in metal concentration in plant tissues was observed over experimental period. Among plant tissues, metal concentration of Pb was highest i.e. 362 mg kg?1 in roots and 313 mg kg?1 in shoots at end of experiment. Pb, Cu, and Cd concentrations were higher in roots than shoots and hence translocation factors were less than 1.0. Metal removal efficiency was better from industrial wastewater and was in order of Pb > Cu > Cd. T. latifolia can be used for remediation of heavy metal-polluted wastewater.  相似文献   
304.
Hyperthermia treatment has been shown to enhance the in vitro antiproliferative effects of IFN-alpha, IFN-beta, and IFN-gamma, with IFN-gamma being more strongly enhanced than IFN-alpha. The comparative effects of hyperthermia on the in vivo antitumor activities of IFN-alpha and IFN-gamma were evaluated in the murine system using both subcutaneous and intraperitoneal B16 melanoma tumor model systems. Heat-induced whole body hyperthermia, resulting in a 2 degree C rise in body temperature, was administered by incubating the mice for 8 hours in a dry incubator at 37.1 degrees C. Whole body hyperthermia was found to enhance the antitumor activity of IFN-alpha by approximately 1.0 fold and 1.2 fold for the subcutaneous and intraperitoneal tumor models, respectively. This represented an additive effect of hyperthermia and IFN-alpha. Hyperthermia was found to enhance the antitumor activity of IFN-gamma by approximately 2.9 fold and 2.2 fold for the subcutaneous and intraperitoneal tumor models, respectively. This represented a synergistic effect of hyperthermia and IFN-gamma. The results of this in vivo study confirm and extend the in vitro observation that hyperthermia more strongly enhances the antitumor action of IFN-gamma than IFN-alpha. These results may have clinical importance because they suggest that hyperthermia may be used in combination with IFN-gamma to provide a synergistically enhanced antitumor action.  相似文献   
305.
306.
Ahmad  Rakhshan  Sami  Neha  Perveen  Gulnar  Fatma  Tasneem 《The protein journal》2022,41(3):414-423
The Protein Journal - Phenylalanine ammonia lyase (PAL) catalyzes the deamination of phenylalanine to cinnamic acid and ammonia. It plays a crucial role in the formation of secondary metabolites...  相似文献   
307.
Bilirubin detection plays a major role in healthcare. Its high concentration in human serum is lethal and must be determined accurately. Clinically, it is vital for assessing patients with deleterious health conditions such as jaundice or icterus, hepatitis, mental disorders, cerebral palsy and brain damage especially in the case of neonates. In evaluating the drawbacks regarding the conventional methodology of bilirubin detection, there is need for a superior analytical tool. Bilirubin oxidase (BOx)-based sensors have been designed for the ultrasensitive analysis of bilirubin and quality deliverance of treatment and this review highlights the different mechanisms of bilirubin detection using different modified electrodes. Further, it also addresses the exploitation of highly attractive electrocatalytic properties of elite nanoparticles such as gold and zirconia- coated silica nanoparticles in enhancing the reproducibility and specificity of bilirubin biosensors.  相似文献   
308.
309.
Pomegranate peels (PPW) as municipal waste is inexpensive biomass that could be a renewable source of sugars particularly rich in hemicellulosic contents. The subsequent conversion of available sugars in PPW can provide prospective strategy for cost-effective bioenergy production. In this study, an experimental setup based on CCD was implemented with the aim of bioconversion of biomass into bioethanol. The factors considered were Hydrochloric acid concentration (X1), the hydrolysis temperature (X2) and time (X3) for optimization with dilute Hydrochloric acid (HCl) saccharification. The present study investigates the optimised level of bioethanol synthesis from acid pre-treated PPW explained by RSM. Subsequently, three yeasts viz. Saccharomyces cerevisiae K7, Metschnikowia sp. Y31 and M. cibodasensis Y34 were utilized for fermentation of acid hydrolysed and detoxified feed stocks. Optimum values of reducing sugars 48.02 ± 0.02 (gL?1) and total carbohydrates 205.88 ± 0.13 (gL?1) were found when PPW was hydrolyzed with 1% HCl concentration at 100?C of temperature for 30 min. Later on, fermentation of PPWH after detoxification with 2.5% activated charcoal. The significant ethanol (g ethanol/g of reducing sugars) yields after fermentation with Metschnikowia sp. Y31 and M. cibodasensis Y34 found to be 0.40 ± 0.03 on day 5 and 0.41 ± 0.02 on last day of experiment correspondingly. Saccharomyces cerevisiae K7 also produce maximum ethanol 0.40 ± 0.00 on last day of incubation utilizing the PPWH. The bioconversion of commonly available PPW into bioethanol as emphasize in this study could be a hopeful expectation and also cost-effective to meet today energy crisis.  相似文献   
310.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号