首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   7篇
  2005年   1篇
  2004年   8篇
  2003年   6篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1998年   2篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   7篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   5篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
91.
92.
We recently described novel regulatory roles for protein histidine phosphorylation of key islet proteins (e.g., nucleoside diphosphate kinase and succinyl thiokinase) in insulin secretion from the islet beta-cell (Kowluru A. Diabetologia 44: 89-94, 2001; Kowluru A, Tannous M, and Chen HQ. Arch Biochem Biophys 398: 160-169, 2002). In this context, we also characterized a novel, ATP- and GTP-sensitive protein histidine kinase in isolated beta-cells that catalyzed the histidine phosphorylation of islet (endogenous) proteins as well as exogenously added histone 4, and we implicated this kinase in the activation of islet endogenous G proteins (Kowluru A. Biochem Pharmacol 63: 2091-2100, 2002). In the present study, we describe abnormalities in ATP- or GTP-mediated histidine phosphorylation of nucleoside diphosphate kinase in islets derived from the Goto-Kakizaki (GK) rat, a model for non-insulin-dependent diabetes. Furthermore, we provide evidence for a marked reduction in the activities of ATP- or GTP-sensitive histidine kinases in GK rat islets. On the basis of these observations, we propose that alterations in protein histidine phosphorylation could contribute toward insulin-secretory abnormalities demonstrable in the diabetic islet.  相似文献   
93.
Apoptosis of retinal endothelial cells and pericytes is postulated to contribute to the development of retinopathy in diabetes. The goal of this study is to investigate diabetes-induced activation of retinal caspase-3, an apoptosis executer enzyme, in retina, and examine the effects of antioxidants on the activation. Caspase-3 activation was determined in the retina of alloxan diabetic rats (2-14 months duration) and in the isolated retinal capillary cells (endothelial cells and pericytes) by measuring cleavage of caspase-3 specific fluorescent substrate, and cleavage of caspase-3 holoenzyme and poly (ADP ribosyl) polymerase. Effect of antioxidants on the activation of caspase-3 was determined by feeding a group of diabetic rats diet supplemented with a comprehensive mixture of antioxidants, including Trolox, alpha-tocopherol, N-acetyl cysteine, ascorbic acid, beta-carotene and selenium for 2-14 months, and also under in vitro conditions by incubating isolated retinal capillary cells with antioxidants with wide range of actions. Caspase-3 was activated in the rat retina at 14 months of diabetes (P < 0.05 vs. normal), but not at 2 months of diabetes, and administration of antioxidants for the entire duration inhibited this activation. In the isolated retinal capillary cells incubated in 25 mM glucose medium, caspase-3 activity was increased by 50% compared to the cells incubated in 5 mM glucose (P < 0.02), and antioxidants or caspase-3 inhibitor inhibited this increase. Our results suggest that increased oxidative stress in diabetes is involved in the activation of retinal caspase-3 and apoptosis of endothelial cells and pericytes. Antioxidants might be inhibiting the development of diabetic retinopathy by inhibiting microvascular apoptosis.  相似文献   
94.
Stimulation of insulin secretion by glucose and other secretagogues from pancreatic islet beta-cells is mediated by multiple signaling pathways. Rac1 is a member of Rho family GTPases regulating cytoskeletal organization, and recent evidence also implicates Rac1 in exocytotic processes. Herein, we report that exposure of insulin-secreting (INS) cells to stimulatory glucose concentrations caused translocation of Rac1 from cytosol to the membrane fraction (including the plasmalemma), an indication of Rac1 activation. Furthermore, glucose stimulation increased Rac1 GTPase activity. Time course study indicates that such an effect is demonstrable only after 15 min stimulation with glucose. Expression of a dominant-negative Rac1 mutant (N17Rac1) abolished glucose-induced translocation of Rac1 and significantly inhibited insulin secretion stimulated by glucose and forskolin. This inhibitory effect on glucose-stimulated insulin secretion was more apparent in the late phase of secretion. However, N17Rac1 expression did not significantly affect insulin secretion induced by high K+. INS-1 cells expressing N17Rac1 also displayed significant morphological changes and disappearance of F-actin structures. Expression of wild-type Rac1 or a constitutively active Rac1 mutant (V12Rac1) did not significantly affect either the stimulated insulin secretion or basal release, suggesting that Rac1 activation is essential, but not sufficient, for evoking secretory process. These data suggest, for the first time, that Rac1 may be involved in glucose- and forskolin-stimulated insulin secretion, possibly at the level of recruitment of secretory granules through actin cytoskeletal network reorganization.  相似文献   
95.
Long-chain fatty acids (e.g. arachidonic acid) have been implicated in physiological control of insulin secretion. We previously reported histidine phosphorylation of at least two islet proteins (e.g., NDP kinase and the beta subunit of trimeric G-proteins), and suggested that such a signalling step may have regulatory roles in beta cell signal transduction, specifically at the level of G-protein activation. Since our earlier findings also indicated potential regulation by long-chain fatty acids of islet G-proteins, we undertook the current study to verify putative regulation, by fatty acids, of protein histidine phosphorylation of NDP kinase and Gbeta subunit in normal rat islets. The phosphoenzyme formation of NDP kinase was stimulated by various fatty acids in the following rank order: linoleic acid > arachidonic acid > oleic acid > palmitic acid = stearic acid = control. Furthermore, the catalytic activity of NDP kinase was stimulated by these fatty acids in the rank order of: oleic acid > arachidonic acid > linoleic acid > palmitic acid = stearic acid = control. Arachidonic acid methyl ester, an inactive analog of arachidonic acid, did not significantly affect either the phosphoenzyme formation or the catalytic activity of NDP kinase. Interestingly, arachidonic acid exerted dual effects on the histidine phosphorylation of beta subunit; it significantly stimulated the phosphorylation at 33 microM beyond which it was inhibitory. Together, these findings identify additional loci (e.g., NDP kinase and Gbeta subunit) at which unsaturated, but not saturated, fatty acids could exert their intracellular effects leading to exocytotic secretion of insulin.  相似文献   
96.
Chemical examination of the hexane extract of the roots of Excoecaria agallocha Linn collected from the Godavari estuary resulted in the isolation of altogether eleven diterpenoids of which five (1-5) are new. The structures of the new diterpenoids have been elucidated by a study of their physical and spectral (UV, IR, 1H, 13C, DEPT, 1H-1H COSY, NOESY, HMQC, HMBC and MASS) data as 3-oxo-ent-13epi-8(13)-epoxy-15-chloro-14-hydroxylabdane (1), ent-15-chloro-13,14-dihydroxylabd-8(9)-en-3-one (2), ent-15-chloro-labd-8(9)ene-3alpha,13,14-triol (3), ent-11beta-hydroxy-8(14),15-isopimaradien-3-one (4), 8,13-epoxy-3-nor-2,3-seco-14-epilabden-2,4-olide (5). The six known diterpenoids have been characterised respectively as ent-3-oxo-13-epi-manoyl oxide (6), ent-3beta-hydroxy-13-epi-manoyl oxide (7), (13R,14S)-ent-8alpha,13;14,15-diepoxy-13-epi-labdan-3-one (8), ent-16-hydroxy-3-oxo-13-epimanoyl oxide (9), ent-15-hydroxylabda-8(17),13E-dien-3-one (10), labda-8(17),13E-diene-3beta,15-diol (11) by a comparative study of their spectral data with the literature values.  相似文献   
97.
Single-atom substrate modifications have revealed an intricate network of transition state interactions in the Tetrahymena ribozyme reaction. So far, these studies have targeted virtually every oxygen atom near the reaction center, except one, the 5'-bridging oxygen atom of the scissile phosphate. To address whether interactions with this atom play any role in catalysis, we used a new type of DNA substrate in which the 5'-oxygen is replaced with a methylene (-CH2-) unit. Under (kcat/Km)S conditions, the methylene phosphonate monoester substrate dCCCUCUT(mp)TA4 (where mp indicates the position of the phosphonate linkage) unexpectedly reacts approximately 10(3)-fold faster than the analogous control substrates lacking the -CH2- modification. Experiments with DNA-RNA chimeric substrates reveal that the -CH2- modification enhances docking of the substrates into the catalytic core of the ribozyme by approximately 10-fold and stimulates the chemical cleavage by approximately 10(2)-fold. The docking effect apparently arises from the ability of the -CH2- unit to suppress inherently deleterious effects caused by the thymidine residue that immediately follows the cleavage site. To analyze the -O- to -CH2- modification in the absence of this thymidine residue, we prepared oligonucleotide substrates containing methyl phosphate or ethyl phosphonate at the reaction center, thereby eliminating the 3'-terminal TA4 nucleotidyl group. In this context, the -O- to -CH2-modification has no effect on docking but retains the approximately 10(2)-fold effect on the chemical step. To investigate further the stimulatory influence on the chemical step, we measured the "intrinsic" effect of the -O- to -CH2- modification in nonenzymatic reactions with nucleophiles. We found that in solution, the -CH2- modification stimulates chemical reactivity of the phosphorus center by <5-fold, substantially lower in magnitude than the stimulatory effect in the catalytic core of the ribozyme. The greater stimulatory effect of the -CH2- modification in the active site compared to in solution may arise from fortuitous changes in molecular geometry that allow the ribozyme to accommodate the phosphonate transition state better than the natural phosphodiester transition state. As the -CH2- unit lacks lone pair electrons, its effectiveness in the ribozyme reaction suggests that the 5'-oxygen of the scissile phosphate plays no role in catalysis via hydrogen bonding or metal ion coordination. Finally, we show by analysis of physical organic data that such interactions in general provide little catalytic advantage to RNA and protein phosphoryl transferases because the 5'-oxygen undergoes only a small buildup of negative charge during the reaction. In addition to its mechanistic significance for the Tetrahymena ribozyme reaction and phosphoryl transfer reactions in general, this work suggests that phosphonate monoesters may provide a novel molecular tool for determining whether the chemical step limits the rate of an enzymatic reaction. As methylene phosphonate monoesters react modestly faster than phosphate diesters in model reactions, a similarly modest stimulatory effect on an enzymatic reaction upon -CH2- substitution would suggest rate-limiting chemistry.  相似文献   
98.
Despite emerging evidence to suggest that glucose-stimulated insulin secretion (GSIS) requires membrane targeting of specific small G proteins (e.g., Rac1), very little is known with regard to the precise mechanisms underlying subcellular trafficking of these proteins in the glucose-stimulated islet -cell. We previously reported activation of small G proteins by biologically active lipids via potentiation of relevant GDP/GTP exchange activities within the -cell. Herein, we studied putative regulatory roles for these lipids in the trafficking and membrane association of Rac1 in cell-free preparations derived from INS 832/13 -cells. Incubation of INS 832/13 cell lysates with polyphosphoinositides (e.g., PIP2), phosphatidic acid, phosphatidylcholine, and phosphatidylserine significantly promoted trafficking of cytosolic Rac1 to the membrane fraction. Lysophosphatidic acid, but not lysophosphatidylcholine or lysophosphatidylserine, also promoted translocation and membrane association of Rac1. Arachidonic acid, diacylglycerol, calcium, and cAMP failed to exert any clear effects on Rac1 translocation to the membrane. Together, our findings provide the first direct evidence in support of our recent hypothesis (Kowluru A, Veluthakal R. Diabetes 54: 3523–3529, 2005), which states that generation of biologically active lipids, known to occur in the glucose-stimulated -cell, may mediate targeting of Rac1 to the membrane for optimal interaction with its putative effector proteins leading to GSIS. pancreatic -cells; GDP dissociation inhibitor; glucose-stimulated insulin secretion  相似文献   
99.
A vacuolar proton pyrophosphatase cDNA clone was isolated from Sorghum bicolor (SbVPPase) using end-to-end gene-specific primer amplification. It showed 80–90% homology at the nucleotide and 85–95% homology at the amino acid level with other VPPases. The gene was introduced into expression vector pCAMBIA1301 under the control of the cauliflower mosaic virus 35S (CaMV35S) promoter and transformed into Agrobacterium tumifaciens strain LBA4404 to infect embryogenic calli of finger millet (Eleusine coracana). Successful transfer of SbVPPase was confirmed by a GUS histochemical assay and PCR analysis. Both, controls and transgenic plants were subjected to 100 and 200 mM NaCl and certain biochemical and physiological parameters were studied. Relative water content (RWC), plant height, leaf expansion, finger length and width and grain weight were severely reduced (50–70%), and the flowering period was delayed by 20% in control plants compared to transgenic plants under salinity stress. With increasing salt stress, the proline and chlorophyll contents as well as the enzyme activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and glutathione reductase (GR) increased by 25–100% in transgenics, while malondialdehyde (MDA) showed a 2–4-fold decrease. The increased activities of antioxidant enzymes and the reduction in the MDA content suggest efficient scavenging of reactive oxygen species (ROS) in transgenics and, as a consequence, probably alleviation of salt stress. Also, the leaf tissues of the transgenics accumulated 1.5–2.5-fold higher Na+ and 0.4–0.8-fold higher K+ levels. Together, these results clearly demonstrate that overexpression of SbVPPase in transgenic finger millet enhances the plant's performance under salt stress.  相似文献   
100.
Nuclear lamins form the lamina on the interior surface of the nuclear envelope, and regulate nuclear metabolic events, including DNA replication and organization of chromatin. The current study is aimed at understanding the role of executioner caspase 6 on lamin A integrity in islet β-cells under duress of glucotoxic (20 mM glucose; 24 h) and diabetic conditions. Under glucotoxic conditions, glucose-stimulated insulin secretion and metabolic cell viability were significantly attenuated in INS-1 832/13 cells. Further, exposure of normal human islets, rat islets and INS-1 832/13 cells to glucotoxic conditions leads to caspase 6 activation and lamin A degradation, which is also observed in islets from the Zucker diabetic fatty rat, a model for type 2 diabetes (T2D), and in islets from a human donor with T2D. Z-Val-Glu-Ile-Asp-fluoromethylketone, a specific inhibitor of caspase 6, markedly attenuated high glucose-induced caspase 6 activation and lamin A degradation, confirming that caspase 6 mediates lamin A degradation under high glucose exposure conditions. Moreover, Z-Asp-Glu-Val-Asp-fluoromethylketone, a known caspase 3 inhibitor, significantly inhibited high glucose-induced caspase 6 activation and lamin A degradation, suggesting that activation of caspase 3 might be upstream to caspase 6 activation in the islet β-cell under glucotoxic conditions. Lastly, we report expression of ZMPSTE24, a zinc metallopeptidase involved in the processing of prelamin A to mature lamin A, in INS-1 832/13 cells and human islets; was unaffected by high glucose. We conclude that caspases 3 and 6 could contribute to alterations in the integrity of nuclear lamins leading to metabolic dysregulation and failure of the islet β-cell.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号