首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   5篇
  2006年   7篇
  2005年   1篇
  2004年   8篇
  2003年   6篇
  2002年   6篇
  2001年   2篇
  2000年   3篇
  1998年   2篇
  1992年   2篇
  1991年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   7篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   3篇
  1979年   5篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有110条查询结果,搜索用时 15 毫秒
61.
Emerging evidence suggests that GTP-binding proteins (G proteins) play important regulatory roles in physiological insulin secretion from the islet beta-cell. Such conclusions were drawn primarily from experimental data derived through the use of specific inhibitors of G protein function. Data from gene depletion experiments appear to further substantiate key roles for these signaling proteins in the islet metabolism. The first part of this review will focus on findings supporting the hypothesis that activation of specific G proteins is essential for insulin secretion, including regulation of their function by posttranslational modifications at their COOH-terminal cysteines (e.g., isoprenylation). The second part will overview novel, non-receptor-dependent mechanism(s) whereby glucose might activate specific G proteins via protein histidine phosphorylation. The third section will review findings that appear to link abnormalities in the expression and/or functional activation of these key signaling proteins to impaired insulin secretion. It is hoped that this review will establish a basis for future research in this area of islet signal transduction, which presents a significant potential, not only in identifying key signaling proteins that are involved in physiological insulin secretion, but also in examining potential abnormalities in this signaling cascade that lead to islet dysfunction and onset of diabetes.  相似文献   
62.
Sulbactam is a mechanism-based inhibitor of beta-lactamase enzymes used in clinical practice. It undergoes a complex series of chemical reactions in the active site that have been studied extensively in the past three decades. However, the actual species that gives rise to inhibition in a clinical setting has not been established. Recent studies by our group, using Raman microscopy and X-ray crystallography, have found that large quantities of enamine-based acyl-enzyme species are present within minutes in single crystals of SHV-1 beta-lactamases which can lead to significant inhibition. The enamines are formed by breakdown of the cyclic beta-lactam structures with further transformations leading to imine formation and subsequent isomerization to cis and/or trans enamines. Another favored form of inhibition arises from attack on the imine by a second nucleophilic amino acid side chain, e.g., from serine 130, to form a cross-linked species in the active site that can degrade to an acrylate-like species irreversibly bound to the enzyme. Thus, the imine is at a branch point on the reaction pathway. Using sulbactam and 6,6-dideuterated sulbactam we follow these alternate paths in WT and E166A SHV-1 beta-lactamase by means of Raman microscopic studies on single enzyme crystals. For the unlabeled sulbactam, the Raman data show the presence of an acrylate-like species, probably 3-serine acrylate, several hours after the reaction is started in the crystal. However, for the 6,6-dideutero analogue the acrylate signature appears on the time scale of minutes. The Raman signatures, principally an intense feature near 1530 cm-1, are assigned based on quantum mechanical calculations on model compounds that mimic acrylate species in the active site. The different time scales observed for acrylate-like product formation are ascribed to different rates of reaction involving the imine intermediate. It is proposed that for the unsubstituted sulbactam the conversion from imine to enamine, which involves breaking a C-H bond, is aided by quantum mechanical tunneling. For the 6,6-dideutero-sulbactam the same step involves breaking a C-D bond, which has little or no assistance from tunneling. Consequently the conversion to enamines is slower, and a higher population of imine results, presenting the opportunity for the competing reaction with the second nucleophile, serine 130 being the prime candidate. The hydrolysis of the resulting cross-linked intermediate leads to the observed rapid buildup of the acrylate product in the Raman spectra from the dideutero analogue. The protocol used here, essentially running the reactions with the two forms of sulbactam in parallel, provides an element of control and enables us to conclude that, for the unsubstituted sulbactam, the formation of the cross-linked intermediate and the final irreversible acrylate product is not a significant route to inhibition of SHV-1.  相似文献   
63.
We prepared, purified, and characterized derivatives of epidermal growth factor (EGF) having a nitroxide spin-label attached covalently at the amino terminus. Characterization of these derivatives with regard to the positions of attachment of the spin-label was accomplished by a combination of peptide mapping, protein sequencing, and fast atom bombardment-mass spectrometry. One derivative was chosen for use in initial investigations by electron paramagnetic resonance (EPR) spectroscopy of receptor-bound EGF and its dissociation kinetics. This derivative was found to be equipotent with the native hormone in competitive binding assays, in activating the EGF receptor kinase, and in stimulating the formation of EGF receptor dimers in solubilized cell extracts. Upon binding to solubilized EGF receptor, the spin-labeled EGF derivative became immobilized, giving rise to a visually distinct slow-motion EPR spectrum. The resulting spectrum showed no detectable dipolar interaction between nitroxides, indicating that the nitroxide moieties of spin-labels reacted at the amino termini of receptor-bound spin-labeled EGF molecules are separated by a distance of at least 16 A. An EPR study of the kinetics of dissociation of spin-labeled EGF in the presence of excess unlabeled EGF revealed a rapid component with a k off approximately 2 x 10(-2) s-1 and a less well resolved slow component.  相似文献   
64.
65.
A sensitive gas chromatographic method for the quantitative determination of the anti-malarial drug primaquine is described. The method involves derivatization with heptafluorobutyric anhydride to form the diheptafluorobutyramide derivative after a single extraction at alkaline pH. The derivatives are quantitated by electron-capture gas chromatography. Blood levels of primaquine as low as 8 ng/ml can be measured with good precision.  相似文献   
66.
Emerging evidence suggests critical roles for protein phosphatase 2A (PP2A) in islet β cell function, including survival and demise (Kowluru A: Biochemical Pharmacol 69:1681–1691, 2005). Herein, we identified an okadaic acid (OKA)-sensitive PP2A-like phosphatase in the nuclear fraction from insulin-secreting INS-1 cells. Western blot analysis indicated relatively higher abundance of the catalytic subunit of protein phosphatase 4 (PP4c) compared to PP2Ac in this fraction. Autoradiographic and vapor-phase equilibration analyses suggested that the nuclear PP4c undergoes OKA-sensitive carboxylmethylation (CML) when S-adenosyl-L-(3H-methyl) methionine (SAM) was used as the methyl donor. Exposure of INS cells to interleukin-1β (IL-1β; 600 pM; 48 h) resulted in a marked increase in nitric oxide (NO) release with concomitant reduction in the degree of expression, the CML and the catalytic activity of only PP4, but not PP2A, in the nuclear fraction. Immunoprecipitation studies suggested potential complexation of PP4c with nuclear lamin-B, a key regulatory protein involved in the nuclear envelope assembly. Based on these findings, we propose that IL-1β-mediated inhibition of PP4 activity might result in the retention of lamin-B in its phosphorylated state, which is a requisite for its degradation by caspases leading to the apoptotic demise of the β cell (Veluthakal et al.: Am J Physiol Cell Physiol 287:C1152–C1162, 2004). Portions of this work were published in the abstract form in Diabetes [53; suppl 2; A377, 2004].  相似文献   
67.
Lamins are intermediate filament proteins that constitute the main components of the lamina underlying the inner-nuclear membrane and serve to organize chromatin. Lamins (e.g., lamin-B) undergo posttranslational modifications (e.g., isoprenylation and methylation) at their C-terminal cysteine. Such modifications are thought to render optimal association of lamins with the nuclear envelop. Herein, we examined whether nuclear lamin-B undergoes carboxyl methylation in islet beta cells. A 65- to 70-kDa protein was carboxyl methylated in intact rat islets and clonal beta (HIT or INS) cells or in homogenates which could be immunoprecipitated using lamin-B antiserum. Incubation of purified HIT cell-nuclear fraction with [(3)H]S-adenosyl methionine yielded a single carboxyl methylated protein peak (ca. 65-70 kDa); this protein was immunologically identified as lamin-B. Several methylation inhibitors, including acetyl farnesyl cysteine, a competitive inhibitor of protein prenyl cysteine methylation, inhibited the carboxyl methylation of lamin-B, indicating that the carboxyl-methylated amino acid is cysteine. These findings, together with our recent observations demonstrating that inhibition of protein isoprenylation causes apoptotic death of the pancreatic beta cell, raise an interesting possibility that inhibition of C-terminal cysteine modifications of lamin-B might result in disruption of nuclear assembly, leading to further propagation of apoptotic signals, including DNA fragmentation and chromatin condensation.  相似文献   
68.
Previously, we reported that the catalytic subunit of protein phosphatase 2A (PP2Ac) undergoes carboxylmethylation (CML) at its COOH-terminal leucine, and that inhibitors of such a posttranslational modification markedly attenuate nutrient-induced insulin secretion from isolated beta-cells. More recent studies have suggested direct inhibitory effects of glucose metabolites on PP2A activity in isolated beta-cells, implying that inhibition of PP2A leads to stimulation of insulin secretion. Because the CML of PP2Ac has been shown to facilitate the holoenzyme assembly and subsequent functional activation of PP2A, we investigated putative regulation by glucose of the CML of PP2Ac in insulin-secreting (INS)-1 cells. Our data indicated a marked inhibition by specific intermediates of glucose metabolism (e.g., citrate and phosphoenolpyruvate) of the CML of PP2Ac in INS-1 cell lysates. Such inhibitory effects were also demonstrable in intact cells by glucose. Mannoheptulose, an inhibitor of glucose metabolism, completely prevented inhibitory effects of glucose on the CML of PP2Ac. Moreover, glucose-mediated inhibition of the CML of PP2Ac was resistant to diazoxide, suggesting that glucose metabolism and the generation of glucose metabolites might control inhibition of the CML of PP2Ac. A membrane-depolarizing concentration of KCl also induced inhibition of the CML of PP2Ac in intact INS cells. On the basis of these data, we propose that glucose metabolism and increase in intracellular calcium facilitate inhibition of the CML of PP2Ac, resulting in functional inactivation of PP2A. This, in turn, might retain the key signaling proteins of the insulin exocytotic cascade in their phosphorylated state, leading to stimulated insulin secretion.  相似文献   
69.
Ceriopsins F and G,diterpenoids from Ceriops decandra   总被引:1,自引:0,他引:1  
Anjaneyulu AS  Rao VL 《Phytochemistry》2003,62(8):1207-1211
Chemical examination of the ethyl acetate solubles of the CH(3)OH:CH(2)Cl(2) (1:1) extract of the roots of Ceriops decandra collected from Kauvery estuary resulted in the isolation of two more diterpenoids, ceriopsins F and G (1-2) and five known compounds, ent-13-hydroxy-16-kauren-19-oic acid (steviol, 3), methyl ent-16beta,17-dihydroxy-9(11)-kauren-19-oate (4), ent-16beta,17-dihydroxy-9(11)-kauren-19-oic acid (5), ent-16-oxobeyeran-19-oic acid (isosteviol, 6), 8,15R-epoxypimaran-16-ol (7). The structures of the new diterpenoids were elucidated by a study of their physical and spectral data as methyl ent-13,17-epoxy-16-hydroxykauran-19-oate (1) and ent-16-oxobeyeran-19-al (2).  相似文献   
70.
The effect of glucose on the metabolism of phospholipids in pancreatic islets was studied with three radioactive phospholipid precursors, [32P]orthophosphate, [3H]myoinositol, and [3H]arachidonic acid, to determine the conditions necessary for studying the breakdown of prelabeled phospholipids. Islets were incubated in the presence of a radioactive precursor for 60 or 90 min and in the presence of either 3.3 or 16.7 mM glucose to prelabel phospholipids. To study the breakdown of prelabeled phospholipid, the unincorporated precursor was removed and the islets were reincubated for 15 or 20 min under conditions that either did or did not stimulate insulin release. Prelabeling in the presence of a noninsulinotropic concentration of glucose (3.3 mM) supported the incorporation of precursors into almost all islet phospholipids studied. Prelabeling in an insulinotropic concentration of glucose (16.7 mM) increased the incorporation of precursors into a number of phospholipids even more; and reincubation in 16.7 mM glucose caused a rapid loss of radioactivity from specific phospholipids (phosphatidylinositol and/or phosphatidylcholine, depending on the precursor). This breakdown was observed only when islets had been prelabeled in 16.7 mM glucose. The amount of radioactivity lost from phospholipid corresponded roughly to the additional amount incorporated during the prelabeling in the high concentration of glucose. Radioactivity in phospholipids in islets prelabeled in 3.3 mM glucose or in nonsecretagogue metabolic fuels, such as malate plus pyruvate, did not decrease when the islets were subsequently exposed to 16.7 mM glucose, nor did it decrease in 3.3 mM glucose when these islets had been prelabeled in 16.7 mM glucose. Glyceraldehyde, an insulin secretagogue, but not galactose or L-glucose which are not insulin secretagogues, stimulated phospholipid breakdown in islets that had been prelabeled in 16.7 mM glucose. Depriving islets of extracellular calcium, a condition that inhibits insulin release, inhibited phospholipid breakdown. The results suggest that pancreatic islets contain a glucose-responsive and a glucose-unresponsive phospholipid pool. The glucose-responsive pool becomes labeled and undergoes rapid turnover only under stimulatory conditions and may play a role in the stimulus-secretion coupling of insulin release.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号