首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   345篇
  免费   45篇
  2022年   1篇
  2021年   9篇
  2020年   2篇
  2019年   7篇
  2018年   5篇
  2017年   12篇
  2016年   5篇
  2015年   10篇
  2014年   17篇
  2013年   23篇
  2012年   24篇
  2011年   14篇
  2010年   12篇
  2009年   9篇
  2008年   16篇
  2007年   11篇
  2006年   20篇
  2005年   13篇
  2004年   11篇
  2003年   9篇
  2002年   7篇
  2001年   15篇
  2000年   9篇
  1999年   15篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1995年   5篇
  1994年   4篇
  1993年   6篇
  1992年   5篇
  1991年   10篇
  1990年   3篇
  1989年   7篇
  1988年   6篇
  1987年   2篇
  1986年   9篇
  1985年   2篇
  1984年   4篇
  1983年   1篇
  1982年   4篇
  1981年   11篇
  1980年   2篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
  1973年   3篇
  1969年   1篇
排序方式: 共有390条查询结果,搜索用时 31 毫秒
351.
This study examined the role of interleukin (IL)-1 receptor-associated kinase (IRAK) and protein kinase C (PKC) in oxidized LDL (Ox-LDL)-induced monocyte IL-1β production. In THP1 cells, Ox-LDL induced time-dependent secretory IL-1β and IRAK1 activity; IRAK4, IRAK3, and CD36 protein expression; PKCδ-JNK1 phosphorylation; and AP-1 activation. IRAK1/4 siRNA and inhibitor (INH)-attenuated Ox-LDL induced secreted IL-1β and pro-IL-1β mRNA and pro-IL-1β and mature IL-1β protein expression, respectively. Diphenyleneiodonium chloride (NADPH oxidase INH) and N-acetylcysteine (free radical scavenger) attenuated Ox-LDL-induced reactive oxygen species generation, caspase-1 activity, and pro-IL-1β and mature IL-1β expression. Ox-LDL-induced secretory IL-1β production was abrogated in the presence of JNK INH II, Tanshinone IIa, Ro-31-8220, Go6976, Rottlerin, and PKCδ siRNA. PKCδ siRNA attenuated the Ox-LDL-induced increase in IRAK1 kinase activity, JNK1 phosphorylation, and AP-1 activation. In THP1 macrophages, CD36, toll-like receptor (TLR)2, TLR4, TLR6, and PKCδ siRNA prevented Ox-LDL-induced PKCδ and IRAK1 activation and IL-1β production. Enhanced Ox-LDL and IL-1β in systemic inflammatory response syndrome (SIRS) patient plasma demonstrated positive correlation with each other and with disease severity scores. Ox-LDL-containing plasma induced PKCδ and IRAK1 phosphorylation and IL-1β production in a CD36-, TLR2-, TLR4-, and TLR6-dependent manner in primary human monocytes. Results suggest involvement of CD36, TLR2, TLR4, TLR6, and the PKCδ-IRAK1-JNK1-AP-1 axis in Ox-LDL-induced IL-1β production.  相似文献   
352.
A total of 23 volatile constituents was identified and characterized by GC and GC-MS in the volatile essential oil extracted from intact (juvenile and adult) and fallen (senescent and leaf litter) leaves of lemon-scented eucalyptus (Eucalyptus citriodora Hook.). The leaves differed in their pigment, water and protein content, and C/N ratio. The oils were, in general, monoterpenoid in nature with 18 monoterpenes and 5 sesquiterpenes. However, a great variability in the amount of essential oils and their individual constituents was observed in different leaf tissues. The amount was maximum in the senescent leaves collected from the floor of the tree closely followed by that from juvenile leaves. In all, 19 constituents were identified in oil from juvenile and senescent leaves compared to 23 in adult leaves and 20 in leaf litter, respectively. Citronellal, a characteristic monoterpene of the oil reported hitherto was found to be more (77-78%) in the juvenile and senescent leaves compared to 48 and 54%, respectively, in the adult leaves and leaf litter. In the adult leaves, however, the content of citronellol--another important monoterpene-- was very high (21.9%) compared to other leaf types (7.8-12.2%). Essential oil and its two major monoterpenes viz. citronellal and citronellol were tested for their phytotoxicity against two weeds (Amaranthus viridis and Echinochloa crus-galli) and two crops (Triticum aestivum and Oryza sativa) under laboratory conditions. A difference in the phytotoxicity, measured in terms of seedling length and dry weight, of oil from different leaves and major monoterpenes was observed. Oil from adult leaves was found to be most phytotoxic although it occurs in smaller amount (on unit weight basis). The different toxicity of different oil types was due to the relative amount of individual monoterpenes present in the oil, their solubility and interactive action. The study concludes that oil from senescent and juvenile leaves being rich in citronellal could be used as commercial source of citronellal whereas that from adult leaves for weed management programmes as it was the most phytotoxic.  相似文献   
353.
This paper presents the formation of a novel biomimetic interface consisting of an electrolessly deposited gold film overlaid with a tethered bilayer lipid membrane (tBLM). Self-assembly of colloidal gold particles was used to create an electrolessly deposited gold film on a glass slide. The properties of the film were characterized using field-effect scanning electron microscopy, energy dispersive spectroscopy, and atomic force microscopy. Bilayer lipid membranes were then tethered to the gold film by first depositing an inner molecular leaflet using a mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[3-(2-pyridyldithio)propionate], 1,2-di-O-phytanyl-sn-glycero-3-phosphoethanolamine (DPGP), and cystamine in ethanol onto a freshly prepared electrolessly deposited gold surface. The outer leaflet was then formed by the fusion of liposomes made from DPGP or 1,2-dioleoyl-sn-glycero-3-phosphocholine on the inner leaflet. To provide functionality, two membrane biomolecules were also incorporated into the tBLMs: the ionophore valinomycin and a segment of neuropathy target esterase containing the esterase domain. Electrochemical impedance spectroscopy, UV/visible spectroscopy, and fluorescence recovery after pattern photobleaching were used to characterize the resulting biomimetic interfaces and confirm the biomolecule activity of the membrane. Microcontact printing was used to form arrays of electrolessly deposited gold patterns on glass slides. Subsequent deposition of lipids yielded arrays of tBLMs. This approach can be extended to form functional biomimetic interfaces on a wide range of inexpensive materials, including plastics. Potential applications include high-throughput screening of drugs and chemicals that interact with cell membranes and for probing, and possibly controlling, interactions between living cells and synthetic membranes. In addition, the gold electrode provides the possibility of electrochemical applications, including biocatalysis, bio-fuel cells, and biosensors.  相似文献   
354.
Nitric oxide (NO) is a bioactive gaseous, multifunctional molecule playing a central role and mediating a variety of physiological processes and responses to biotic and abiotic stresses including heavy metals. The present study investigated whether NO applied exogenously as sodium nitroprusside (SNP) has any protective role against arsenic (As) toxicity in Oryza sativa (rice). Treatment with 50 μM SNP (a NO donor) significantly ameliorated the As-induced (25 or 50 μM) decrease in root and coleoptile length of rice. Further, As-induced oxidative stress measured in terms of malondialdehyde (MDA), superoxide ion (), root oxidizability and H2O2 content was lesser upon supplementation of NO. It indicated a reactive oxygen species (ROS) scavenging activity of NO. NO addition reversed (only partially) the As-induced increase in activities of antioxidant enzymes – superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, and catalase. The study concludes that exogenous NO provides resistance to rice against As-toxicity and has an ameliorating effect against As-induced stress.  相似文献   
355.
Synaptonemal complex (SC) proteins Hop1 and Mek1 have been proposed to promote homologous recombination in meiosis of Saccharomyces cerevisiae by establishment of a barrier against sister chromatid recombination. Therefore, it is interesting to know whether the homologous proteins play a similar role in Schizosaccharomyces pombe. Unequal sister chromatid recombination (USCR) was found to be increased in hop1 and mek1 single and double deletion mutants in assays for intrachromosomal recombination (ICR). Meiotic intergenic (crossover) and intragenic (conversion) recombination between homologous chromosomes was reduced. Double-strand break (DSB) levels were also lowered. Notably, deletion of hop1 restored DSB repair in rad50S meiosis. This may indicate altered DSB repair kinetics in hop1 and mek1 deletion strains. A hypothesis is advanced proposing transient inhibition of DSB processing by Hop1 and Mek1 and thus providing more time for repair by interaction with the homologous chromosome. Loss of Hop1 and Mek1 would then result in faster repair and more interaction with the sister chromatid. Thus, in S. pombe meiosis, where an excess of sister Holliday junction over homologous Holliday junction formation has been demonstrated, Hop1 and Mek1 possibly enhance homolog interactions to ensure wild-type level of crossover formation rather than inhibiting sister chromatid interactions.Sexual reproduction in eukaryotes involves formation of haploid gametes from diploid cells by one round of DNA replication, pairing of the homologous chromosomes, and recombination and then by the two meiotic divisions (53). In fungi the gametes differentiate into haploid spores, which germinate to form vegetative cells. Crossover (CO) formation between homologous chromosomes and DNA repair processes between sister chromatids are required for spore viability (10, 55, 58).In vegetative cells homologous recombination (HR) is important for repair of DNA damage and stalled replication forks, with the sister chromatid as the preferred partner (28). Many of the enzymes involved in mitotic HR also contribute to meiotic recombination. In addition, meiosis-specific cytological structures and enzymes enhance recombination frequency (meiotic induction) and shift partner preference from sister chromatids to homologous chromosomes (3, 47, 64, 74). In detail the steps of HR vary between different types of sequence organization (allelic versus sister versus ectopic), between different types of DNA damage, between meiotic and mitotic cells, and between species (10, 55, 58).Meiotic recombination, including CO formation, is initiated by DNA double-strand breaks (DSBs). In Saccharomyces cerevisiae and other eukaryotes, DSBs are formed by Spo11. Many cofactors are required (29). The Schizosaccharomyces pombe homolog is Rec12, also requiring auxiliary factors whose elimination leads to loss of meiotic DSB formation (12). The 5′ single-strand ends at DSBs are processed by nucleases. In S. cerevisiae the MRX complex made up by the proteins Rad50, Mre11, and Xrs2 is required for this resection, as well as for DSB formation. The corresponding MRN complex of S. pombe (Rad50, Rad32, and Nbs1) is not required for DSB formation but is essential for DSB repair (43, 72). Deletion of rad50, rad32, or ctp1 (homologous to SAE2/COM1 in S. cerevisiae and CtIP in humans) leads to very low spore viability. These proteins are also essential for DSB processing (23, 24, 32, 43, 60, 62).Free DNA 3′ ends at DSBs are recruited for invasion of a sister or homologous chromatid by the strand transfer proteins Rad51 and Dmc1, again involving many accessory proteins (16). This results in the central intermediates of HR: heteroduplex DNA consisting of single strands originating from different chromatids and Holliday junctions (HJs). In S. cerevisiae HJs form preferably between homologs with a two- to sixfold excess over intersister HJs (64). Surprisingly, meiotic HJs form with about a fourfold excess between sisters in S. pombe (11). Eventually the intermediates are resolved into crossover (CO) and noncrossover (NCO) events. COs show exchange of the flanking sequences of the two chromatids involved and usually carry a patch of conversion (unilateral transfer of DNA sequences from one chromatid to its interacting partner) near the DSB site. NCOs are conversion events without associated COs (22). In S. pombe loss of core HR functions leads to very low spore viability: deletion of rad51 but not of dmc1 (20), double mutation of rad54 and rdh54 (7), inactivation of the endonuclease activity encoded by mus81 and eme1 (5, 52), and combined deletion of rad22 and rti1 (homologs of RAD52 of S. cerevisiae). But, differently from the other core functions, Rad22 and Rti1 are not required for CO and NCO (50).Early in meiotic prophase of many eukaryotes, axial elements (called lateral elements in later stages) form along sister chromatids, and pairing of homologous chromosomes is initiated, leading to juxtaposition of the homologous chromosomes along their whole length in the synaptonemal complex (SC) (54). In S. pombe no SC is formed, but linear elements (LEs), resembling axial elements of other eukaryotes, are formed. LEs do not form continuously along the chromosomes (1) but load the proteins Rec10, Hop1, and Mek1 (36, 44, 57), which are homologs of, or at least related, to the S. cerevisiae proteins Red1, Hop1, and Mek1, respectively, localizing to axial/lateral elements (2, 67). Hop1 carries a HORMA domain, also present in proteins associating with axial elements and regulating the progress of recombination in higher eukaryotes: Arabidopsis thaliana (61), Caenorhabditis elegans (9, 41), and mammals (18).In S. cerevisiae localization of Hop1 and Mek1 (meiosis-specific protein kinase) to axial elements is dependent on Red1 (2, 67). Mutation of the three S. cerevisiae genes results in reduction of DSB formation, CO and conversion frequencies, and spore viability (26, 31, 59). Direct comparison of unequal sister chromatid recombination (USCR) frequencies in an assay excluding the scoring of intrachromatid recombination (ICR) revealed no increase in the hop1 null mutant but about fourfold increases in the red1 and mek1 null mutants (69). The S. cerevisiae Hop1, Red1, and Mek1 proteins are involved in biasing meiotic DSB repair to occur between homologous chromosomes rather than between sister chromatids (47). Activated Mek1 kinase is required for the inhibition of sister chromatid-mediated DSB repair by Rad51, when the DMC1 gene is deleted and the meiotic recombination checkpoint is activated (4, 27, 38, 47). For Mek1 activation, phosphorylation of Hop1 by the Mec1/Tel1 kinases is also required (6).Less is known about the S. pombe proteins. Hop1 of S. pombe was identified as a nonsignificant hit by sequence comparison with full-length S. cerevisiae Hop1 and contains an N-terminal HORMA domain and a central zinc finger motif like Hop1 in S. cerevisiae. In addition they share a short homology block toward the C terminus (36). The Mek1 protein of S. pombe shares 34% identity and 54% similarity with its S. cerevisiae counterpart along the whole sequence. It contains an FHA domain in the N-terminal part like the other members of its family of checkpoint kinases and is involved in regulation of the meiotic cell cycle (57). Hop1 and Mek1 are strongly expressed in meiosis but not expressed or only slightly expressed in vegetative cells (42, 57). In prophase both proteins localize to LEs as defined by colocalization with the LE component Rec10 (36). Deletion of the distant RED1 homolog rec10 abolishes LE formation (36, 44) and strongly reduces meiotic recombination (17, 70). Rec10, but not Hop1 and Mek1, is required for localization of Rec7 (a distant homolog of S. cerevisiae Rec114) to meiotic chromosomes (34). Rec7 and Rec10 are required for Rec12 activity (12, 29).Obtaining information on the functions of Hop1 and Mek1 in S. pombe was the aim of the work presented here, especially on their possible roles in homolog versus sister discrimination for DSB repair. Deletion mutants have been studied with respect to spore viability and the frequencies of CO and conversion. They have also been assessed for genetic recombination events between sister chromatids in the known PS1 assay (63) and the newly developed VL1 assay (for details, see Fig. Fig.3).3). Physical analysis of DSB formation and repair has been performed in meiotic time course experiments. It is proposed that S. pombe Hop1 and Mek1 are promoting interactions between homologous chromosomes rather than inhibiting interactions between sister chromatids.Open in a separate windowFIG. 3.PS1 and VL1 assay systems for intrachromosomal recombination. Strains with constructs carrying repeated DNA sequences have been assayed for prototroph formation either by intrachromatid recombination (ICR, yielding prototrophs only in PS1) or by unequal sister chromatid recombination (USCR, in PS1 and VL1). Crosses of the constructs were performed with strains carrying a deletion of the ade6 gene to exclude other homologous recombination events. (A) The PS1 assay involves copies of the ade6 gene inactivated by either the hot spot mutation M26 or the mutation 469. The repeated sequences are separated by the ura4+ marker (63). ICR (left) or USCR (right) between the repeated sequences can lead to formation of adenine prototrophs that have lost the ura4+ marker by crossover (CO) or single-strand annealing (SSA) events. Adenine prototrophs maintaining the ura4+ marker can derive from noncrossover (NCO) events. Both types of pairing may lead to CO or NCO products. (B) The newly constructed VL1 assay (see the supplemental material) involves different truncations of the ade6 gene separated by the hygR marker (also called hphMX6), conferring hygromycin resistance. The left truncation carries a 3′ portion of ade6; the right truncation carries a 5′ portion of ade6. While the gray parts of the truncations are not overlapping, the white sections of 500-bp length are of almost identical sequence, allowing for homologous pairing. CO and SSA products resulting from ICR retain only the central portion of ade6 and remain auxotrophic. Adenine prototrophic CO and NCO products resulting from USCR both retain hygromycin resistance. Note that NCO events may arise through loop formation of one sister chromatid and pairing with a single block (500 bp) of the repeated ade6 sequence (39).  相似文献   
356.
2-Benzoxazolinone (BOA), a well-known allelochemical with strong phytotoxicity, is a potential herbicidal candidate. The aim of the present study was to determine whether phytotoxicity of BOA is due to induction of oxidative stress caused by generation of reactive oxygen species (ROS) and the changes in levels of antioxidant enzymes induced in response to BOA. Effect of BOA was studied on electrolyte leakage, lipid peroxidation (LP), hydrogen peroxide (H(2)O(2)) generation, proline (PRO) accumulation, and activities of antioxidant enzymes-superoxide dismutase (SOD, 1.15.1.1), ascorbate peroxidase (APX, 1.11.1.11), guaiacol peroxidase (GPX, 1.11.1.7), catalase (CAT, 1.11.1.6) and glutathione reductase (GR, 1.6.4.2) in Phaseolus aureus (mung bean). BOA significantly enhanced malondialdehyde (MDA) content, a product of LP, in both leaves and roots of mung bean. The amount of H(2)O(2), a product of oxidative stress, and endogenous PRO increased many-fold in response to BOA. Accumulation of PRO, MDA and H(2)O(2) indicates the cellular damage in the target tissue caused by ROS generated by BOA. In response to BOA, there was a significant increase in the activities of scavenging enzymes SOD, APX, GPX, CAT, and GR in root and leaf tissue of mung bean. At 5 mM BOA, GR activity in roots showed a nearly 22-fold increase over that in control. The present study concludes that BOA induces oxidative stress in mung bean through generation of ROS and upregulation of activities of various scavenging enzymes.  相似文献   
357.
358.
The adoption of insect-resistant transgenic crops has been increasing annually at double-digit rates since the commercial release of first-generation maize and cotton expressing a single modified Bacillus thuringiensis toxin (Bt) nine years ago. Studies have shown that these Bt crops can be successfully deployed in agriculture, which has led to a decrease in pesticide usage, and that they are environmentally benign. However, the sustainability and durability of pest resistance continues to be discussed. In this review, we focus on the science that underpins second- and third-generation insect-resistant transgenic plants and examine the appropriateness and relevance of models that are currently being used to determine deployment strategies to maximize sustainability and durability. We also review strategies that are being developed for novel approaches to transgenic insect pest control.  相似文献   
359.
Radioactive sulfate (35SO2-4) has been shown to be incorporated into immunoprecipitable prolactin-like material from incubated minces of sheep and buffalo pituitaries. The 35S-labelled prolactin could be purified by standard procedures. On SDS-PAGE, the 35S-labelled prolactin rich fraction gives two major Coomassie blue bands around 25KDa and these on Western blot analysis gave positive bands. Radioactive [14C]- mannose was also found incorporated into the prolactin like material. The nature of sulphate link to the peptide is not known. It could be sugar-SO4 and/or Tyrosine-SO4.  相似文献   
360.
Thymidine-requiring strains of Escherichia coli isolated by trimethoprim selection often simultaneously acquire the ability to suppress bacteriophage T4 nonsense mutations. Suppression is lost in Thy+ revertants and recombinants, but is sometimes retained in thyA plasmid-bearing transformants. Suppression is restricted in Strr derivatives of the Thy- mutants, indicating that suppression occurs at the level of translation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号