首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3019篇
  免费   253篇
  3272篇
  2023年   18篇
  2022年   41篇
  2021年   69篇
  2020年   24篇
  2019年   53篇
  2018年   61篇
  2017年   49篇
  2016年   109篇
  2015年   173篇
  2014年   209篇
  2013年   242篇
  2012年   331篇
  2011年   252篇
  2010年   200篇
  2009年   137篇
  2008年   203篇
  2007年   187篇
  2006年   161篇
  2005年   160篇
  2004年   145篇
  2003年   117篇
  2002年   120篇
  2001年   32篇
  2000年   15篇
  1999年   22篇
  1998年   18篇
  1997年   14篇
  1996年   13篇
  1995年   22篇
  1994年   7篇
  1993年   12篇
  1992年   12篇
  1991年   9篇
  1990年   8篇
  1989年   2篇
  1988年   4篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1967年   1篇
排序方式: 共有3272条查询结果,搜索用时 15 毫秒
81.

Background  

Recessively inherited natural and induced mutations in the barley Mlo gene confer durable broad-spectrum resistance against the powdery mildew pathogen, Blumeria graminis f.sp. hordei. Mlo codes for a member of a plant-specific family of polytopic integral membrane proteins with unknown biochemical activity. Resistant barley mlo mutant alleles identify amino acid residues that are critical for Mlo function in the context of powdery mildew susceptibility.  相似文献   
82.
83.
S100A1 is an EF-hand type Ca2+-binding protein with a muscle-specific expression pattern. The highest S100A1 protein levels are found in cardiomyocytes, and it is expressed already at day 8 in the heart during embryonic development. Since S100A1 is known to be involved in the regulation of Ca2+ homeostasis, we tested whether extracellular S100A1 plays a role in regulating the L-type Ca2+ current (I(Ca)) in ventricular cardiomyocytes. Murine embryonic (day 16.5 postcoitum) ventricular cardiomyocytes were incubated with S100A1 (0.001-10 microM) for different time periods (20 min to 48 h). I(Ca) density was found to be significantly increased as early as 20 min (from -10.8 +/- 1 pA/pF, n = 18, to -22.9 +/- 1.4 pA/pF; +112.5 +/- 13%, n = 9, p < 0.001) after the addition of S100A1 (1 microM). S100A1 also enhanced I(Ca) current density in neonatal rat cardiomyocytes. Fluorescence and capacitance measurements evidenced a fast translocation of rhodamine-coupled S100A1 from the extracellular space into cardiomyocytes. S100A1 treatment did not affect cAMP levels. However, protein kinase inhibitor, a blocker of cAMP-dependent protein kinase A (PKA), abolished the S100A1-induced enhancement of I(Ca). Accordingly, measurements of PKA activity yielded a significant increase in S100A1-treated cardiomyocytes. In vitro reconstitution assays further demonstrated that S100A1 enhanced PKA activity. We conclude that the Ca2+-binding protein S100A1 augments transsarcolemmal Ca2+ influx via an increase of PKA activity in ventricular cardiomyocytes and hence represents an important regulator of cardiac function.  相似文献   
84.
85.
Crucial steps in geochemical cycles are in many cases performed by more than one group of microorganisms, but the significance of this functional redundancy with respect to ecosystem functioning is poorly understood. Ammonia-oxidizing archaea (AOA) and their bacterial counterparts (AOB) are a perfect system to address this question: although performing the same transformation step, they belong to well-separated phylogenetic groups. Using pig manure amended with different concentrations of sulfadiazine (SDZ), an antibiotic that is frequently used in veterinary medicine, it was possible to affect AOB and AOA to different degrees. Addition of manure stimulated growth of AOB in both soils and, interestingly, also growth of AOA was considerably stimulated in one of the soils. The antibiotic treatments decreased the manure effect notably on AOB, whereas AOA were affected to a lower extent. Model calculations concerning the respective proportions of AOA and AOB in ammonia oxidation indicate a substantial contribution of AOA in one of the soils that further increased under the influence of SDZ, hence indicating functional redundancy between AOA and AOB.  相似文献   
86.
87.
88.
Honey bee pollination is a key ecosystem service to nature and agriculture. However, biosafety research on genetically modified crops rarely considers effects on nurse bees from intact colonies, even though they receive and primarily process the largest amount of pollen. The objective of this study was to analyze the response of nurse bees and their gut bacteria to pollen from Bt maize expressing three different insecticidal Cry proteins (Cry1A.105, Cry2Ab2, and Cry3Bb1). Naturally Cry proteins are produced by bacteria (Bacillus thuringiensis). Colonies of Apis mellifera carnica were kept during anthesis in flight cages on field plots with the Bt maize, two different conventionally bred maize varieties, and without cages, 1-km outside of the experimental maize field to allow ad libitum foraging to mixed pollen sources. During their 10-days life span, the consumption of Bt maize pollen had no effect on their survival rate, body weight and rates of pollen digestion compared to the conventional maize varieties. As indicated by ELISA-quantification of Cry1A.105 and Cry3Bb1, more than 98% of the recombinant proteins were degraded. Bacterial population sizes in the gut were not affected by the genetic modification. Bt-maize, conventional varieties and mixed pollen sources selected for significantly different bacterial communities which were, however, composed of the same dominant members, including Proteobacteria in the midgut and Lactobacillus sp. and Bifidobacterium sp. in the hindgut. Surprisingly, Cry proteins from natural sources, most likely B. thuringiensis, were detected in bees with no exposure to Bt maize. The natural occurrence of Cry proteins and the lack of detectable effects on nurse bees and their gut bacteria give no indication for harmful effects of this Bt maize on nurse honey bees.  相似文献   
89.
90.
In mammals, glucocorticoids (GCs) and their intracellular receptor, the glucocorticoid receptor (GR), represent critical checkpoints in the endocrine control of energy homeostasis. Indeed, aberrant GC action is linked to severe metabolic stress conditions as seen in Cushing's syndrome, GC therapy and certain components of the Metabolic Syndrome, including obesity and insulin resistance. Here, we identify the hepatic induction of the mammalian conserved microRNA (miR)‐379/410 genomic cluster as a key component of GC/GR‐driven metabolic dysfunction. Particularly, miR‐379 was up‐regulated in mouse models of hyperglucocorticoidemia and obesity as well as human liver in a GC/GR‐dependent manner. Hepatocyte‐specific silencing of miR‐379 substantially reduced circulating very‐low‐density lipoprotein (VLDL)‐associated triglyceride (TG) levels in healthy mice and normalized aberrant lipid profiles in metabolically challenged animals, mediated through miR‐379 effects on key receptors in hepatic TG re‐uptake. As hepatic miR‐379 levels were also correlated with GC and TG levels in human obese patients, the identification of a GC/GR‐controlled miRNA cluster not only defines a novel layer of hormone‐dependent metabolic control but also paves the way to alternative miRNA‐based therapeutic approaches in metabolic dysfunction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号