首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3142篇
  免费   270篇
  2023年   13篇
  2022年   36篇
  2021年   70篇
  2020年   26篇
  2019年   58篇
  2018年   66篇
  2017年   48篇
  2016年   119篇
  2015年   179篇
  2014年   214篇
  2013年   247篇
  2012年   337篇
  2011年   261篇
  2010年   204篇
  2009年   142篇
  2008年   205篇
  2007年   197篇
  2006年   170篇
  2005年   166篇
  2004年   152篇
  2003年   124篇
  2002年   124篇
  2001年   34篇
  2000年   16篇
  1999年   22篇
  1998年   18篇
  1997年   16篇
  1996年   16篇
  1995年   23篇
  1994年   7篇
  1993年   14篇
  1992年   14篇
  1991年   15篇
  1990年   13篇
  1989年   3篇
  1988年   6篇
  1985年   3篇
  1984年   2篇
  1982年   6篇
  1981年   3篇
  1980年   7篇
  1979年   2篇
  1976年   2篇
  1973年   1篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1965年   2篇
  1865年   1篇
排序方式: 共有3412条查询结果,搜索用时 495 毫秒
311.
The functional consequences of a series of point mutations in transmembrane segment M1 of sarcoplasmic reticulum Ca2+-ATPase were analyzed in steady-state and transient kinetic experiments examining the partial reaction steps involved in Ca2+ interaction and phosphoenzyme turnover. Arginine or leucine substitution of Glu51, Glu55, or Glu58, located in the N-terminal third of M1, did not affect these functions. Arginine or leucine substitution of Asp59, located right at the bend of M1 seen in the crystal structure of the thapsigargin-bound form, caused a 10-fold increase of the rate of Ca2+ dissociation toward the cytoplasmic side. Mutation of Leu60 to alanine or proline and of Val62 to alanine also enhanced Ca2+ dissociation, whereas an 11-fold reduction of the rate of Ca2+ dissociation was observed upon alanine substitution of Leu65, thus providing evidence for a relation of the middle part of M1 to a gating mechanism controlling the dissociation of occluded Ca2+ from its membranous binding sites. Moreover, phosphoenzyme processing was affected by some of the latter mutations, in particular leucine substitution of Asp59, and alanine substitution of Leu65 accelerated the transition to ADP-insensitive phosphoenzyme and blocked its dephosphorylation, thus demonstrating that this part of M1, besides being important in Ca2+ interaction, furthermore, is a critical element in the long range signaling between the transmembrane domain and the cytoplasmic catalytic site.  相似文献   
312.
Two types of proteinaceous endoxylanase inhibitors occur in different cereals, i.e. the TAXI [Triticum aestivum endoxylanase inhibitor]-type and XIP [endoxylanase inhibiting protein]-type inhibitors. The present paper focuses on the TAXI-type proteins and deals with their structural characteristics and the identification, characterisation and heterologous expression of a TAXI gene from wheat. In addition, to shed light on the mechanism by which TAXI-type endoxylanase inhibitors work, the enzyme specificity, the optimal conditions for maximal inhibition activity, the molar complexation ratio and the inhibition kinetics of the inhibitors are explained and the effect of mutations of an endoxylanase on the inhibition by TAXIs is discussed.  相似文献   
313.
Mutations in the homeobox gene SHOX cause growth retardation and the skeletal abnormalities associated with Léri-Weill, Langer, and Turner syndromes. Little is known about the mechanism underlying these SHOX-related inherited disorders of bone formation. Here we demonstrate that SHOX expression in osteogenic stable cell lines, primary oral fibroblasts, and primary chondrocytes leads to cell cycle arrest and apoptosis. These events are associated with alterations in the expression of several cellular genes, including pRB, p53, and the cyclin kinase inhibitors p21(Cip1) and p27(Kip1). A SHOX mutant, such as seen in Léri-Weill syndrome patients, does not display these activities of the wild type protein. We have also shown that endogenous SHOX is mainly expressed in hypertrophic/apoptotic chondrocytes of the growth plate, strongly suggesting that the protein plays a direct role in regulating the differentiation of these cells. This study provides the first insight into the biological function of SHOX as regulator of cellular proliferation and viability and relates these cellular events to the phenotypic consequences of SHOX deficiency.  相似文献   
314.
YidC/OxaI play essential roles in the insertion of a wide range of membrane proteins in Eschericha coli and mitochondria, respectively. In contrast, the chloroplast thylakoid homolog Albino3 (Alb3) facilitates the insertion of only a specialized subset of proteins, and the vast majority insert into thylakoids by a pathway that is so far unique to chloroplasts. In this study, we have analyzed the role of Alb3 in the cyanobacterium Synechocystis sp. PCC6803, which contains internal thylakoids that are similar in some respects to those of chloroplasts. The single alb3 gene (slr1471) was disrupted by the introduction of an antibiotic cassette, and photoautotrophic growth resulted in the generation of a merodiploid species (but not full segregation), indicating an essential role for Alb3 in maintaining the photosynthetic apparatus. Thylakoid organization is lost under these conditions, and the levels of photosynthetic pigments fall to approximately 40% of wild-type levels. Photosynthetic electron transport and oxygen evolution are reduced by a similar extent. Growth on glucose relieves the selective pressure to maintain photosynthetic competence, and under these conditions, the cells become completely bleached, again indicating that Alb3 is essential for thylakoid biogenesis. Full segregation could not be achieved under any growth regime, strongly suggesting that the slr1471 open reading frame is essential for cell viability.  相似文献   
315.
Axonal damage is a major morphological correlate and cause of permanent neurological deficits in patients with multiple sclerosis (MS), a multifocal, inflammatory and demyelinating disease of the central nervous system. Hyperphosphorylation and pathological aggregation of microtubule-associated protein tau is a common feature of many neurodegenerative diseases with axonal degeneration including Alzheimer's disease. We have therefore analyzed tau phosphorylation, solubility and distribution in the brainstem of rats with experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Tau was hyperphosphorylated at several sites also phosphorylated in Alzheimer's disease and became partially detergent-insoluble in EAE brains. Morphological examination demonstrated accumulation of amorphous deposits of abnormally phosphorylated tau in the cell body and axons of neurons within demyelinating plaques. Hyperphosphorylation of tau was accompanied by up-regulation of p25, an activator of cyclin-dependent kinase 5. Phosphorylation of tau, activation of cdk5, and axonal pathology were significantly reduced when diseased rats were treated with prednisolone, a standard therapy of acute relapses in MS. Hyperphosphorylation of tau was not observed in a genetic or nutritional model of axonal degeneration or demyelination, suggesting that inflammation as detected in the brains of rats with EAE is the specific trigger of tau pathology. In summary, our data provide evidence that axonal damage in EAE and possibly MS is linked to tau pathology.  相似文献   
316.
An effective immunity to Toxoplasma gondii in humans is dependent on the cellular immune response. Toxoplasma can infect and replicate in almost all nucleated cells, and the most important cytokine regulating the growth in humans is IFN-gamma; however, the role of TNF-alpha has to date been largely described to be synergistic. We show that, compared with mature human dendritic cells (mDC), immature human DC (iDC) demonstrate a reduced parasite proliferation when infected with Toxoplasma. This toxoplasmostasis was only present in iDC after 11 days of culture and was not present in DC that had been matured ex vivo using a cytokine mixture (mDC). Spontaneous toxoplasmostatic activity has previously only been described in fresh human monocytes, and the mechanism involved is as yet unclear. We show that, in comparison with an absence of expression in mDC, TNF-R2 is expressed in both iDC and monocytes infected with Toxoplasma, and furthermore, that blocking the TNF-R2 with Abs abrogates the toxoplasmostasis in the iDC. These findings demonstrate a functional role for TNF-R2 in the newly described spontaneous toxoplasmostasis of iDC.  相似文献   
317.
Atopic dermatitis is a chronic inflammatory skin disease with a steadily increasing prevalence. Exposure to allergens or bacterial superantigens triggers T and dendritic cell (DC) recruitment and induces atopic skin inflammation. In this study, we report that among all known chemokines CCL18/DC-CK1/PARC represents the most highly expressed ligand in atopic dermatitis. Moreover, CCL18 expression is associated with an atopic dermatitis phenotype when compared with other chronic inflammatory skin diseases. DCs either dispersed within the dermis or clustering at sites showing perivascular infiltrates are abundant sources of CCL18. In vitro, microbial products including LPS, peptidoglycan, and mannan, as well as the T cell-derived activation signal CD40L, induced CCL18 in monocytes. In contrast to monocytes, monocyte-derived, interstitial-type, and Langerhans-type DCs showed a constitutive and abundant expression of CCL18. In comparison to Langerhans cells, interstitial-type DCs produced higher constitutive levels of CCL18. In vivo, topical exposure to the relevant allergen or the superantigen staphylococcal enterotoxin B, resulted in a significant induction of CCL18 in atopic dermatitis patients. Furthermore, in nonatopic NiSO4-sensitized individuals, only relevant allergen but not irritant exposure resulted in the induction of CCL18. Taken together, findings of the present study demonstrate that CCL18 is associated with an atopy/allergy skin phenotype, and is expressed at the interface between the environment and the host by cells constantly screening foreign Ags. Its regulation by allergen exposure and microbial products suggests an important role for CCL18 in the initiation and amplification of atopic skin inflammation.  相似文献   
318.
Ligation of the TCR along with the coreceptor CD28 is necessary to elicit T cell activation in vivo, whereas TCR triggering alone does not allow a full T cell response. Upon T cell activation of human peripheral blood T cells, we found that the majority of cAMP was generated in T cell lipid rafts followed by activation of protein kinase A. However, upon TCR and CD28 coligation, beta-arrestin in complex with cAMP-specific phosphodiesterase 4 (PDE4) was recruited to lipid rafts which down-regulated cAMP levels. Whereas inhibition of protein kinase A increased TCR-induced immune responses, inhibition of PDE4 blunted T cell cytokine production. Conversely, overexpression of either PDE4 or beta-arrestin augmented TCR/CD28-stimulated cytokine production. We show here for the first time that the T cell immune response is potentiated by TCR/CD28-mediated recruitment of PDE4 to lipid rafts, which counteracts the local, TCR-induced production of cAMP. The specific recruitment of PDE4 thus serves to abrogate the negative feedback by cAMP which is elicited in the absence of a coreceptor stimulus.  相似文献   
319.
Analogous to cellular glycoproteins, viral envelope proteins contain N-terminal signal sequences responsible for targeting them to the secretory pathway. The prototype foamy virus (PFV) envelope (Env) shows a highly unusual biosynthesis. Its precursor protein has a type III membrane topology with both the N and C terminus located in the cytoplasm. Coexpression of FV glycoprotein and interaction of its leader peptide (LP) with the viral capsid is essential for viral particle budding and egress. Processing of PFV Env into the particle-associated LP, surface (SU), and transmembrane (TM) subunits occur posttranslationally during transport to the cell surface by yet-unidentified cellular proteases. Here we provide strong evidence that furin itself or a furin-like protease and not the signal peptidase complex is responsible for both processing events. N-terminal protein sequencing of the SU and TM subunits of purified PFV Env-immunoglobulin G immunoadhesin identified furin consensus sequences upstream of both cleavage sites. Mutagenesis analysis of two overlapping furin consensus sequences at the PFV LP/SU cleavage site in the wild-type protein confirmed the sequencing data and demonstrated utilization of only the first site. Fully processed SU was almost completely absent in viral particles of mutants having conserved arginine residues replaced by alanines in the first furin consensus sequence, but normal processing was observed upon mutation of the second motif. Although these mutants displayed a significant loss in infectivity as a result of reduced particle release, no correlation to processing inhibition was observed, since another mutant having normal LP/SU processing had a similar defect.  相似文献   
320.
The use of particulate carriers holds great promise for the development of effective and affordable recombinant vaccines. Rational development requires a detailed understanding of particle up-take and processing mechanisms to target cellular pathways capable of stimulating the required immune responses safely. These mechanisms are in turn based on how the host has evolved to recognize and process pathogens. Pathogens, as well as particulate vaccines, come in a wide range of sizes and biochemical compositions. Some of these also provide 'danger signals' so that antigen 'senting cells (APC), usually dendritic cells (DC), acquire specific stimulatory activity. Herein, we provide an overview of the types of particles currently under investigation for the formulation of vaccines, discuss cellular uptake mechanisms (endocytosis, macropinocytosis, phagocytosis, clathrin-dependent and/or caveloae-mediated) for pathogens and particles of different sizes, as well as antigen possessing and presentation by APC in general, and DC in particular. Since particle size and composition can influence the immune response, inducing humoral and/or cellular immunity, activating CD8 T cells and/or CD4 T cells of T helper 1 and/or T helper 2 type, particle characteristics have a major impact on vaccine efficacy. Recently developed methods for the formulation of particulate vaccines are presented in this issue of Methods, showcasing a range of "cutting edge" particulate vaccines that employ particles ranging from nano to micro-sized. This special issue of Methods further addresses practical issues of production, affordability, reproducibility and stability of formulation, and also includes a discussion of the economic and regulatory challenges encountered in developing vaccines for veterinary use and for common Third World infectious diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号