首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2989篇
  免费   250篇
  3239篇
  2023年   18篇
  2022年   40篇
  2021年   69篇
  2020年   23篇
  2019年   53篇
  2018年   60篇
  2017年   47篇
  2016年   108篇
  2015年   171篇
  2014年   208篇
  2013年   240篇
  2012年   329篇
  2011年   252篇
  2010年   200篇
  2009年   135篇
  2008年   200篇
  2007年   187篇
  2006年   160篇
  2005年   158篇
  2004年   144篇
  2003年   117篇
  2002年   119篇
  2001年   31篇
  2000年   13篇
  1999年   21篇
  1998年   17篇
  1997年   14篇
  1996年   13篇
  1995年   22篇
  1994年   7篇
  1993年   12篇
  1992年   12篇
  1991年   9篇
  1990年   8篇
  1989年   2篇
  1988年   4篇
  1985年   1篇
  1984年   1篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1974年   1篇
排序方式: 共有3239条查询结果,搜索用时 0 毫秒
231.
Astrin is a mitotic spindle-associated protein required for the correct alignment of all chromosomes at the metaphase plate. Astrin depletion delays chromosome alignment and causes the loss of normal spindle architecture and sister chromatid cohesion before anaphase onset. Here we describe an astrin complex containing kinastrin/SKAP, a novel kinetochore and mitotic spindle protein, and three minor interaction partners: dynein light chain, Plk1, and Sgo2. Kinastrin is the major astrin-interacting protein in mitotic cells, and is required for astrin targeting to microtubule plus ends proximal to the plus tip tracking protein EB1. Cells overexpressing or depleted of kinastrin mislocalize astrin and show the same mitotic defects as astrin-depleted cells. Importantly, astrin fails to localize to and track microtubule plus ends in cells depleted of or overexpressing kinastrin. These findings suggest that microtubule plus end targeting of astrin is required for normal spindle architecture and chromosome alignment, and that perturbations of this pathway result in delayed mitosis and nonphysiological separase activation.  相似文献   
232.

Background

The regulatory subunit (R) of cAMP-dependent protein kinase (PKA) is a modular flexible protein that responds with large conformational changes to the binding of the effector cAMP. Considering its highly dynamic nature, the protein is rather stable. We studied the thermal denaturation of full-length RIα and a truncated RIα(92-381) that contains the tandem cyclic nucleotide binding (CNB) domains A and B.

Methodology/Principal Findings

As revealed by circular dichroism (CD) and differential scanning calorimetry, both RIα proteins contain significant residual structure in the heat-denatured state. As evidenced by CD, the predominantly α-helical spectrum at 25°C with double negative peaks at 209 and 222 nm changes to a spectrum with a single negative peak at 212–216 nm, characteristic of β-structure. A similar α→β transition occurs at higher temperature in the presence of cAMP. Thioflavin T fluorescence and atomic force microscopy studies support the notion that the structural transition is associated with cross-β-intermolecular aggregation and formation of non-fibrillar oligomers.

Conclusions/Significance

Thermal denaturation of RIα leads to partial loss of native packing with exposure of aggregation-prone motifs, such as the B'' helices in the phosphate-binding cassettes of both CNB domains. The topology of the β-sandwiches in these domains favors inter-molecular β-aggregation, which is suppressed in the ligand-bound states of RIα under physiological conditions. Moreover, our results reveal that the CNB domains persist as structural cores through heat-denaturation.  相似文献   
233.
Pogonophora, also known as Siboglinidae, are tube-dwelling marine annelids. They rely on endosymbiotic chemoautotrophic bacteria for nutrition and their anatomy and physiology are adapted to their need to obtain both oxygen and reduced sulphur compounds. Frenulate pogonophores are generally long and slender, sediment-living tubeworms; vestimentiferans are stouter, inhabitants of hydrothermal vents and cool seeps; and moniliferans or sclerolinids are very slender inhabitants of decaying wood and sulphidic sediments. The anatomy and ultrastructure of the three groups are compared and recent publications are reviewed. Annelid characters are the presence of chaetae and septa, concentrated at the hind end. The adaptations to a specialised way of life include, in particular, the chitinous tube; the anterior appendages that function as gills; the internal tissue called the trophosome, where the endosymbiotic bacteria live; and the blood vascular system that transports oxygen, sulphide and carbon dioxide to the trophosome.  相似文献   
234.
The actin cytoskeleton in normal and pathological cell motility   总被引:6,自引:0,他引:6  
Cell motility is crucial for tissue formation and for development of organisms. Later on cell migration remains essential throughout the lifetime of the organism for wound healing and immune responses. The actin cytoskeleton is the cellular engine that drives cell motility downstream of a complex signal transduction cascade. The basic molecular machinery underlying the assembly and disassembly of actin filaments consists of a variety of actin binding proteins that regulate the dynamic behavior of the cytoskeleton in response to different signals. The multitude of proteins and regulatory mechanisms partaking in this system makes it vulnerable to mutations and alterations in expression levels that ultimately may cause diseases. The most familiar one is cancer that in later stages is characterized by active aberrant cell migration. Indeed tumor invasion and metastasis are increasingly being associated with deregulation of the actin system.  相似文献   
235.

Background  

Given the complexity of higher organisms, the number of genes encoded by their genomes is surprisingly small. Tissue specific regulation of expression and splicing are major factors enhancing the number of the encoded products. Commonly these mechanisms are intragenic and affect only one gene.  相似文献   
236.
The di-tripeptide transport system (DtpT) of Lactococcus lactis was purified to apparent homogeneity by pre-extraction of crude membrane vesicles with octaethylene glycol monodecyl ether (C10E8), followed by solubilization with n-dodecyl-beta-D-maltoside (DDM) and chromatography on a Ni-NTA resin. The DtpT protein was reconstituted into detergent-destabilized preformed liposomes prepared from E. coli phospholipid/ phosphatidylcholine. A variety of detergents were tested for their ability to mediate the membrane reconstitution of DtpT and their effectiveness to yield proteoliposomes with a high transport activity. The highest activities were obtained with TX100, C12E8 and DM, whereas DDM yielded relatively poor activities, in particular when this detergent was used at concentrations beyond the onset of solubilization of the preformed liposomes. Parallel with the low activity, significant losses of lipid were observed when the reconstitution was performed at high DDM concentrations. This explained at least part of the reduced transport activity as the DtpT protein was highly dependent on the final lipid-to-protein ratios in the proteoliposomes. Consistent with the difference in mechanism of DDM- and TX100-mediated membrane protein reconstitution, the orientation of the DtpT protein in the membrane was random with DDM and inside-in when T100 was used. The methodology to determine the orientation of membrane-reconstituted proteins from the accessibility of cysteines for thiol-specific reagents is critically evaluated.  相似文献   
237.
Transepithelial transport of the ACE inhibitory peptides Ile-Pro-Pro and Val-Pro-Pro was studied in different models of absorption. Apparent permeability (P(app)) values for absorptive transport across Caco-2 monolayers were 1.0+/-0.9 x 10(-8) (Ile-Pro-Pro) and 0.5+/-0.1 x 10(-8)cms(-1) (Val-Pro-Pro). Ex vivo transport across jejunal segments in the Ussing chamber was 5-times (Ile-Pro-Pro) to 10-times (Val-Pro-Pro) higher with no significant differences (p>0.05) observed between both peptides. The peptidase inhibitor bestatin increased permeability for the absorptive direction for Ile-Pro-Pro by twofold. Neither a transepithelial pH gradient nor increased apical tripeptide concentration nor longitudinal localization of the intestinal segment influenced P(app) in the ex vivo experiments. Val-Pro-Pro transport across Peyer's patches, however, was 4-times higher (P(app)=21.0+/-9.3 x10(-8)cms(-1)) as compared to duodenum (P(app)=4.8+/-1.4 x 10(-8)cms(-1)). In the in situ perfusion experiments P(app) values varied greatly among different animals ranging from 0.5 to 24.0 x10(-8)cms(-1) (Ile-Pro-Pro) and from 1.0 to 15.6 x 10(-8)cms(-1) (Val-Pro-Pro). In summary, Caco-2 and ex vivo absorption models differ considerably regarding their peptide permeability. The in situ model seems to be less appropriate because of the observed large variability in peptide permeability. The results of this study demonstrate that the ACE inhibitory peptides Ile-Pro-Pro and Val-Pro-Pro are absorbed partially undegraded.  相似文献   
238.
Cre/LoxP recombination is the gold standard for conditional gene regulation in mice in vivo. However, promoters driving the expression of Cre recombinase are often active in a wide range of cell types and therefore unsuited to target more specific subsets of cells. To overcome this limitation, we designed inactive “split-Cre” fragments that regain Cre activity when overlapping co-expression is controlled by two different promoters. Using transgenic mice and virus-mediated expression of split-Cre, we show that efficient reporter gene activation is achieved in vivo. In the brain of transgenic mice, we genetically defined a subgroup of glial progenitor cells in which the Plp1- and the Gfap-promoter are simultaneously active, giving rise to both astrocytes and NG2-positive glia. Similarly, a subset of interneurons was labelled after viral transfection using Gad67- and Cck1 promoters to express split-Cre. Thus, split-Cre mediated genomic recombination constitutes a powerful spatial and temporal coincidence detector for in vivo targeting.  相似文献   
239.
240.
Saccharomyces cerevisiae alcohol dehydrogenases responsible for NADH-, and NADPH-specific reduction of the furaldehydes 5-hydroxymethyl-furfural (HMF) and furfural have previously been identified. In the present study, strains overexpressing the corresponding genes (mut-ADH1 and ADH6), together with a control strain, were compared in defined medium for anaerobic fermentation of glucose in the presence and absence of HMF. All strains showed a similar fermentation pattern in the absence of HMF. In the presence of HMF, the strain overexpressing ADH6 showed the highest HMF reduction rate and the highest specific ethanol productivity, followed by the strain overexpressing mut-ADH1. This correlated with in vitro HMF reduction capacity observed in the ADH6 overexpressing strain. Acetate and glycerol yields per biomass increased considerably in the ADH6 strain. In the other two strains, only the overall acetate yield per biomass was affected. When compared in batch fermentation of spruce hydrolysate, strains overexpressing ADH6 and mut-ADH1 had five times higher HMF uptake rate than the control strain and improved specific ethanol productivity. Overall, our results demonstrate that (1) the cofactor usage in the HMF reduction affects the product distribution, and (2) increased HMF reduction activity results in increased specific ethanol productivity in defined mineral medium and in spruce hydrolysate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号