首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97910篇
  免费   8796篇
  国内免费   42篇
  2023年   336篇
  2022年   558篇
  2021年   1722篇
  2020年   961篇
  2019年   1293篇
  2018年   1583篇
  2017年   1442篇
  2016年   2360篇
  2015年   4046篇
  2014年   4605篇
  2013年   5486篇
  2012年   7381篇
  2011年   7105篇
  2010年   4566篇
  2009年   4268篇
  2008年   6048篇
  2007年   6077篇
  2006年   5654篇
  2005年   5484篇
  2004年   5273篇
  2003年   5046篇
  2002年   4753篇
  2001年   988篇
  2000年   732篇
  1999年   1021篇
  1998年   1318篇
  1997年   900篇
  1996年   827篇
  1995年   790篇
  1994年   662篇
  1993年   748篇
  1992年   672篇
  1991年   568篇
  1990年   571篇
  1989年   545篇
  1988年   510篇
  1987年   468篇
  1986年   435篇
  1985年   610篇
  1984年   681篇
  1983年   617篇
  1982年   723篇
  1981年   660篇
  1980年   661篇
  1979年   388篇
  1978年   466篇
  1977年   397篇
  1976年   400篇
  1974年   352篇
  1973年   346篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
The purification procedure of 6,6′-diesters of trehalose from Corynebacterium diphtheriae was modified and the isolated substance was analysed by mass spectrometry as its permethylated derivative. The fatty acid moiety released from the glycolipid after alkaline hydrolysis was studied by mass spectral analysis of the O-methylated and O-acetylated methyl ester derivatives. By argentation thin-layer chromatography, three species of O-acetylated methyl esters were recognized, corresponding to saturated, mono-unsaturated and di-unsaturated α-branched-β-hydroxylated fatty acids. The double bond was located by ozonolysis of the O-acetylated methyl ester derivatives, by gas chromatography of the reaction product and mass spectrometry of the effluent from the gas chromatograph. The main components of each species of α-branched-β-hydroxylated fatty acids found in the gly colipid fraction of C. diphtheriae were 2-tetradecyl-3-hydroxyoctadecanoic acid (C32H64O3, corynomycolic acid), 2-tetradecyl-3-hydroxy-11-octadecenoic acid (C32H62O3, corynomycolenic acid), 2-tetradec-7′-enyl-3-hydroxy octadecanoic acid (C32H62O3) and 2-tetradec-7′-enyl-3-hydroxy-11-octadecenoic acid (C32H60O3, corynomycoldienic acid). The glycolipid fraction from C. diphtheriae is obviously a complex mixture of 6,6′-diesters of trehalose.  相似文献   
172.
173.
Herein, we disclose the discovery and optimization of 2-piperidin-4-yl-acetamide derivatives as MCH-R1 antagonists. Structural investigation of piperidin-4-yl-amide and piperidin-4-yl-ureas identified 2-piperidin-4-yl-acetamide-based MCH-R1 antagonists with outstanding in vivo efficacy but flawed with high affinity towards the hERG potassium channel. While existing hERG SAR information was employed to discover highly potent MCH-R1 antagonists with minimized hERG inhibition, additional hurdles prevented their subsequent clinical exploration.  相似文献   
174.
175.
176.
177.
We apply a previously developed 4-variable ordinary differential equation model of in-host immune response to pneumococcal pneumonia to study the variability of the immune response of MF1 mice and to explore bacteria-driven differences in disease progression and outcome. In particular, we study the immune response to D39 strain of bacteria missing portions of the pneumolysin protein controlling either the hemolytic activity or complement-activating activity, the response to D39 bacteria deficient in either neuraminidase A or B, and the differences in the response to D39 (serotype 2), 0100993 (serotype 3), and TIGR4 (serotype 4) bacteria. The model accurately reproduces infection kinetics in all cases and provides information about which mechanisms in the immune response have the greatest effect in each case. Results suggest that differences in the ability of bacteria to defeat immune response are primarily due to the ability of the bacteria to elude nonspecific clearance in the lung tissue as well as the ability to create damage to the lung epithelium.  相似文献   
178.
Phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate generates diacylglycerol, inositol 1,4,5-trisphosphate and protons, all of which can regulate TRPV1 activity via different mechanisms. Here we explored the possibility that the diacylglycerol metabolites 2-arachidonoylglycerol and 1-arachidonoylglycerol, and not metabolites of these monoacylglycerols, activate TRPV1 and contribute to this signaling cascade. 2-Arachidonoylglycerol and 1-arachidonoylglycerol activated native TRPV1 on vascular sensory nerve fibers and heterologously expressed TRPV1 in whole cells and inside-out membrane patches. The monoacylglycerol lipase inhibitors methylarachidonoyl-fluorophosphonate and JZL184 prevented the metabolism of deuterium-labeled 2-arachidonoylglycerol and deuterium-labeled 1-arachidonoylglycerol in arterial homogenates, and enhanced TRPV1-mediated vasodilator responses to both monoacylglycerols. In mesenteric arteries from TRPV1 knock-out mice, vasodilator responses to 2-arachidonoylglycerol were minor. Bradykinin and adenosine triphosphate, ligands of phospholipase C-coupled membrane receptors, increased the content of 2-arachidonoylglycerol in dorsal root ganglia. In HEK293 cells expressing the phospholipase C-coupled histamine H1 receptor, exposure to histamine stimulated the formation of 2-AG, and this effect was augmented in the presence of JZL184. These effects were prevented by the diacylglycerol lipase inhibitor tetrahydrolipstatin. Histamine induced large whole cell currents in HEK293 cells co-expressing TRPV1 and the histamine H1 receptor, and the TRPV1 antagonist capsazepine abolished these currents. JZL184 increased the histamine-induced currents and tetrahydrolipstatin prevented this effect. The calcineurin inhibitor ciclosporin and the endogenous “entourage” compound palmitoylethanolamide potentiated the vasodilator response to 2-arachidonoylglycerol, disclosing TRPV1 activation of this monoacylglycerol at nanomolar concentrations. Furthermore, intracerebroventricular injection of JZL184 produced TRPV1-dependent antinociception in the mouse formalin test. Our results show that intact 2-arachidonoylglycerol and 1-arachidonoylglycerol are endogenous TRPV1 activators, contributing to phospholipase C-dependent TRPV1 channel activation and TRPV1-mediated antinociceptive signaling in the brain.  相似文献   
179.
Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies.  相似文献   
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号