首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96103篇
  免费   2451篇
  国内免费   51篇
  98605篇
  2018年   1172篇
  2017年   1311篇
  2016年   3110篇
  2015年   6437篇
  2014年   6160篇
  2013年   6076篇
  2012年   5244篇
  2011年   2558篇
  2010年   2441篇
  2009年   2281篇
  2008年   1005篇
  2007年   988篇
  2006年   962篇
  2005年   7042篇
  2004年   5718篇
  2003年   3956篇
  2002年   1439篇
  2001年   1395篇
  2000年   568篇
  1999年   1651篇
  1998年   436篇
  1997年   216篇
  1992年   2097篇
  1991年   2174篇
  1990年   2210篇
  1989年   2173篇
  1988年   2127篇
  1987年   1998篇
  1986年   1783篇
  1985年   1844篇
  1984年   1243篇
  1983年   969篇
  1982年   529篇
  1981年   488篇
  1980年   451篇
  1979年   1261篇
  1978年   892篇
  1977年   733篇
  1976年   760篇
  1975年   1037篇
  1974年   1247篇
  1973年   1259篇
  1972年   1189篇
  1971年   1157篇
  1970年   1059篇
  1969年   1069篇
  1968年   922篇
  1967年   928篇
  1966年   750篇
  1965年   553篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
11.
12.
13.
Auranofin, a new oral antirheumatic gold compound, in concentrations achieved therapeutically, inhibits neutrophil phagocytosis, chemotaxis, chemiluminescence, reduction of cytochrome c, and release of lysosomal enzymes. To further characterize the mechanism by which auranofin affects neutrophils, we studied the effects of auranofin on unstimulated properties and functions of neutrophils as well as on rapidly stimulated functions. When examined by electron microscopy, 4 micrograms/ml of auranofin significantly decreased the number of visualized centriole-associated microtubules in resting cells. Furthermore, auranofin inhibited neutrophil spreading on glass and caused a decrease in negative surface charge (electrophoretic mobility). In addition, auranofin inhibited several fmet-leu-phe-stimulated responses such as shape change, increases in centriole-associated microtubules, decreases in surface charge, and elicited membrane potential changes (di-O-C5(3) dye response). Auranofin (1 micrograms/ml) inhibited fmet-leu-phe-stimulated superoxide and hydrogen peroxide production by 80% (p less than 0.05), and also increased the affinity of receptors for fmet-leu-phe (from Ka 0.035 to Ka 0.48, p less than 0.001). Auranofin also affected neutrophil responses to phorbol myristic acetate (PMA). The total amount of PMA-stimulated superoxide production was suppressed by as little as 0.4 micrograms/ml of auranofin, but the lag time for activation was shortened by low concentrations of auranofin (0.5 to 1 microgram/ml). Four micrograms per milliliter of auranofin suppressed the decrease in surface charge induced by PMA. However, auranofin did not influence superoxide production elicited by the ionophore A23187. The results indicate that auranofin affects the earliest detected responses in neutrophil activation by certain receptor-mediated stimuli.  相似文献   
14.
The neutrophil-stimulating properties of 38 S. aureus strains and 32 S. epidermidis strains were studied in the reaction of luminol-mediated chemiluminescence. All S. aureus strains and 29 S. epidermidis strains were found to possess neutrophil-stimulating activity, the mean activity index for S. aureus being significantly higher. The stimulating activity of the strains varied within a wide range (the variation coefficient was 120.0 +/- 21.9%) and did not correlate with the content of protein A in bacterial cells and the degree of their hydrophoby. The opsonization of staphylococci with normal human serum enhanced the neutrophil reaction 1.5- to 100-fold and simultaneously leveled out the chemiluminescence indices in experiments with different strains (the variation coefficient was 8.0 +/- 1.5%). The nature of the neutrophil-stimulating effect of staphylococci and its relationship to the exploratory reactions of phagocytes are discussed.  相似文献   
15.
16.
17.
S-Protein/vitronectin is a serum glycoprotein that inhibits the lytic activity of the membrane attack complex of complement, i.e., of the complex including the proteins C5b, C6, C7, C8, and C9n. We show that intact S-protein/vitronectin or its cyanogen bromide generated fragments also inhibit the hemolysis mediated by perforin from cytotoxic T-cells at 45 and 11 microM, respectively. The glycosaminoglycan binding site of S-protein/vitronectin is responsible for the inhibition, since a synthetic peptide corresponding to a part of this highly basic domain (amino acid residues 348-360) inhibits complement- as well as perforin-mediated cytolysis. In the case of C9, the synthetic peptide binds to the acidic residues occurring in its N-terminal cysteine-rich domain (residues 101-111). Antibodies raised against this particular segment react 25-fold better with the polymerized form of C9 as compared with its monomeric form, indicating that this site becomes exposed only upon the hydrophilic-amphiphilic transition of C9. Since the cysteine-rich domain of C9 has been shown to be highly conserved in C6, C7, and C8 as well as in perforin, the inhibition of the lytic activities of these molecules by S-protein/vitronectin or by peptides corresponding to its heparin binding site may be explained by a similar mechanism.  相似文献   
18.
19.
20.
Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) is an indispensable component of the HCV replication and assembly machineries. Although its precise mechanism of action is not yet clear, current evidence indicates that its structure and function are regulated by the cellular peptidylprolyl isomerase cyclophilin A (CyPA). CyPA binds to proline residues in the C-terminal half of NS5A, in a distributed fashion, and modulates the structure of the disordered domains II and III. Cyclophilin inhibitors (CPIs), including cyclosporine (CsA) and its nonimmunosuppressive derivatives, inhibit HCV infection of diverse genotypes, both in vitro and in vivo. Here we report a mechanism by which CPIs inhibit HCV infection and demonstrate that CPIs can suppress HCV assembly in addition to their well-documented inhibitory effect on RNA replication. Although the interaction between NS5A and other viral proteins is not affected by CPIs, RNA binding by NS5A in cell culture-based HCV (HCVcc)-infected cells is significantly inhibited by CPI treatment, and sensitivity of RNA binding is correlated with previously characterized CyPA dependence or CsA sensitivity of HCV mutants. Furthermore, the difference in CyPA dependence between a subgenomic and a full-length replicon of JFH-1 was due, at least in part, to an additional role that CyPA plays in HCV assembly, a conclusion that is supported by experiments with the clinical CPI alisporivir. The host-directed nature and the ability to interfere with more than one step in the HCV life cycle may result in a higher genetic barrier to resistance for this class of HCV inhibitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号