首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   271篇
  免费   11篇
  2023年   3篇
  2022年   5篇
  2021年   11篇
  2020年   4篇
  2019年   9篇
  2018年   10篇
  2017年   8篇
  2016年   12篇
  2015年   21篇
  2014年   16篇
  2013年   22篇
  2012年   26篇
  2011年   24篇
  2010年   11篇
  2009年   9篇
  2008年   12篇
  2007年   15篇
  2006年   16篇
  2005年   9篇
  2004年   7篇
  2003年   8篇
  2002年   3篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有282条查询结果,搜索用时 625 毫秒
41.
The effects of photosynthetic photon flux density (PPFD) on antioxidant metabolism and photosynthetic properties in leaves during ex vitro establishment of micropropagated Rauvolfia tetraphylla plantlets were investigated. In vitro-propagated plantlets were acclimatized at either 50 (Low-light = LL) or 300 (High-light = HL) μmol m−2s−1 photosynthetic PPFD for 4 weeks under controlled conditions. Increases in chlorophyll (Chl) a, b and carotenoid levels were observed in plantlets acclimatized at both light intensities. At transplantation, micropropagated plantlets were not photosynthetically active, but the net photosynthetic rate increased in newly formed leaves over time during acclimatization. The observed differences in pigment contents and photosynthetic rates suggested adaptation of plantlets from heterotrophic to autotrophic mode of nutrition during acclimatization. Changes in activities of antioxidant enzymes were also observed during acclimatization. Superoxide dismutase activity increased in plantlets acclimatized at HL intensities. Likewise, changes in activity of catalase and ascorbate peroxidase were also detected. These observed changes reflected the ability of plants in developing an antioxidant enzymatic defense system aiding in survival against oxidative stress and in reducing release of free radicals.  相似文献   
42.
43.
The modulation of primary nitrogen metabolism by water deficit through ABA-dependent and ABA-independent pathways was investigated in the model legume Medicago truncatula. Growth and glutamate metabolism were followed in young seedlings growing for short periods in darkness and submitted to a moderate water deficit (simulated by polyethylene glycol; PEG) or treated with ABA. Water deficit induced an ABA accumulation, a reduction of axis length in an ABA-dependent manner, and an inhibition of water uptake/retention in an ABA-independent manner. The PEG-induced accumulation of free amino acids (AA), principally asparagine and proline, was mimicked by exogenous ABA treatment. This suggests that AA accumulation under water deficit may be an ABA-induced osmolyte accumulation contributing to osmotic adjustment. Alternatively, this accumulation could be just a consequence of a decreased nitrogen demand caused by reduced extension, which was triggered by water deficit and exogenous ABA treatment. Several enzyme activities involved in glutamate metabolism and genes encoding cytosolic glutamine synthetase (GS1b; EC 6.3.1.2.), glutamate dehydrogenase (GDH3; EC 1.4.1.1.), and asparagine synthetase (AS; EC 6.3.1.1.) were up-regulated by water deficit but not by ABA, except for a gene encoding Δ(1)-pyrroline-5-carboxylate synthetase (P5CS; EC not assigned). Thus, ABA-dependent and ABA-independent regulatory systems would seem to exist, differentially controlling development, water content, and nitrogen metabolism under water deficit.  相似文献   
44.
45.
Leaching of the internal apolar phase from the biopolymeric microparticles during storage is a great concern as it undoes the beneficial effects of encapsulation. In this paper, a novel formulation was prepared by encapsulating the sunflower oil-based organogels in alginate microparticles. Salicylic acid and metronidazole were used as the model drugs. The microparticles were prepared by double emulsion methodology. Physico-chemical characterization of the microparticles was done by microscopy, FTIR, XRD, and DSC studies. Oil leaching studies, biocompatibility, mucoadhesivity, in vitro drug release, and the antimicrobial efficiency of the microparticles were also performed. The microparticles were found to be spherical in shape. Gelation of the sunflower oil prevented leaching of the internal phase from the microparticles. Release of drugs from the microparticles followed Fickian kinetics and non-Fickian kinetics in gastric and intestinal environments, respectively. Microparticles showed good antimicrobial activity against both Gram-positive (Bacillus subtilis) and Gram-negative (Escherichia coli) bacteria. The results suggested that the developed formulations hold promise to carry oils without leakage of the internal phase. Encapsulation of organogels within the microparticles has improved the drug entrapment efficiency and improved characteristics for controlled delivery applications.

Electronic supplementary material

The online version of this article (doi:10.1208/s12249-014-0147-2) contains supplementary material, which is available to authorized users.KEY WORDS: alginate, drug delivery, leaching, microparticles, organogels  相似文献   
46.
Between 10 and 25% of individuals with non-alcoholic fatty liver disease (NAFLD) develop hepatic fibrosis leading to cirrhosis and hepatocellular carcinoma (HCC). To investigate the molecular basis of disease progression, we performed a genome-wide analysis of copy number variation (CNV) in a total of 49 patients with NAFLD [10 simple steatosis and 39 non-alcoholic steatohepatitis (NASH)] and 49 matched controls using high-density comparative genomic hybridization (CGH) microarrays. A total of 11 CNVs were found to be unique to individuals with simple steatosis, whilst 22 were common between simple steatosis and NASH, and 224 were unique to NASH. We postulated that these CNVs could be involved in the pathogenesis of NAFLD progression. After stringent filtering, we identified four rare and/or novel CNVs that may influence the pathogenesis of NASH. Two of these CNVs, located at 13q12.11 and 12q13.2 respectively, harbour the exportin 4 (XPO4) and phosphodiesterase 1B (PDE1B) genes which are already known to be involved in the etiology of liver cirrhosis and HCC. Cross-comparison of the genes located at these four CNV loci with genes already known to be associated with NAFLD yielded a set of genes associated with shared biological processes including cell death, the key process involved in ‘second hit’ hepatic injury. To our knowledge, this pilot study is the first to provide CNV information of potential relevance to the NAFLD spectrum. These data could prove invaluable in predicting patients at risk of developing NAFLD and more importantly, those who will subsequently progress to NASH.  相似文献   
47.
The present investigation was undertaken for the assessment of 12 accessions of Zingiber officinale Rosc. collected from subcontinent of India by RAPD markers. DNA was isolated using CTAB method. Thirteen out of twenty primers screened were informative and produced 275 amplification products, among which 261 products (94.90%) were found to be polymorphic. The percentage polymorphism of all 12 accessions ranged from 88.23% to 100%. Most of the RAPD markers studied showed different levels of genetic polymorphism. The data of 275 RAPD bands were used to generate Jaccard’s similarity coefficients and to construct a dendrogram by means of UPGMA. Results showed that ginger undergoes genetic variation due to a wide range of ecological conditions. This investigation was an understanding of genetic variation within the accessions. It will also provide an important input into determining resourceful management strategies and help to breeders for ginger improvement program.  相似文献   
48.
Biological maintenance of cells under variable conditions should affect gene expression of only certain genes while leaving the rest unchanged. The latter, termed "housekeeping genes," by definition must reflect no change in their expression levels during cell development, treatment, or disease state anomalies. However, deviations from this rule have been observed. Using DNA microarray technology, we report here variations in expression levels of certain housekeeping genes in prostate cancer and a colorectal cancer gene therapy model system. To highlight, differential expression was observed for ribosomal protein genes in the prostate cancer cells and beta-actin in treated colorectal cells. High-throughput differential gene expression analysis via microarray technology and quantitative PCR has become a common platform for classifying variations in similar types of cancers, response to chemotherapy, identifying disease markers, etc. Therefore, normalization of the system based on housekeeping genes, such as those reported here in cancer, must be approached with caution.  相似文献   
49.
Stress associated proteins (SAP) have been already reported to play a role in tolerance acquisition of some abiotic stresses. In the present study, the role of MtSAP1 (Medicago truncatula) in tolerance to temperature, osmotic and salt stresses has been studied in tobacco transgenic seedlings. Compared to wild type, MtSAP1 overexpressors were less affected in their growth and development under all tested stress conditions. These results confirm that MtSAP1 is involved in the response processes to various abiotic constraints. In parallel, we have performed studies on an eventual link between MtSAP1 overexpression and proline, a major player in stress response. In an interesting way, the results for the transgenic lines did not show any increase of proline content under osmotic and salt stress, contrary to the WT which usually accumulated proline in response to stress. These data strongly suggest that MtSAP1 is not involved in signaling pathway responsible for the proline accumulation in stress conditions. This could be due to the fact that the overexpression of MtSAP1 provides sufficient tolerance to seedlings to cope with stress without requiring the free proline action. Beyond that, the processes by which the MtSAP1 overexpression lead to the suppression of proline accumulation will be discussed in relation with data from our previous study involving nitric oxide.  相似文献   
50.
Glutamic acid produced from palm waste hydrolysate by fermentation with Brevibacterium lactofermentum ATCC 13869 is produced with a remarkably high yield compared with that produced from pure glucose as a carbon source. The produce yield is 70 g/L with glucose, wherease, when palm waste hydrolysate is the fermentation medium in the same bioreactor under same conditions, it is 88 g/L. The higher yield may be attributed to the fact that this organism has the ability to convert sugars other than only glucose present in the hydrolysate. Bioreactor conditions most conducive for maximum production are pH 7.5, temperature of 30 degrees rmentation period of 48 h, inoculum size 6%, substrate concentration of 10 g per 100 mL, yeast extract 0.5 g per 100 mL as a suitable N source, and biotin at a concentration of 10 pg/L. Palm waste hydrolysate used in this study was prepared by enzymic saccharification of treated palm press fiber under conditions that yielded a maximum of 30 g/L total reducing sugars. Glutamic acid from fermentation broth was recovered by using a chromatographic column (5cm x 60 cm) packed with a strong ion-exchange resin. The filtered broth containing glutamic acid and other inorganic ions was fed to the fully charged column. The broth was continuously recycled at a flow rate of 50 mL/min (retention time of 55 min) until glutamic acid was fully adsorbed on the column leaving other ions in the effluent. Recovery was done by eluting with urea and sodium hydroxide for total displacement of glutamic acid from the resin. The eluent containing 88 g/L of glutamic acid was concentrated by evaporation to obtain solid crystals of the product. (c) 1995 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号