首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   401篇
  免费   26篇
  国内免费   1篇
  428篇
  2023年   1篇
  2022年   7篇
  2021年   17篇
  2020年   7篇
  2019年   12篇
  2018年   8篇
  2017年   8篇
  2016年   18篇
  2015年   25篇
  2014年   27篇
  2013年   32篇
  2012年   42篇
  2011年   37篇
  2010年   25篇
  2009年   26篇
  2008年   28篇
  2007年   26篇
  2006年   25篇
  2005年   10篇
  2004年   18篇
  2003年   15篇
  2002年   12篇
  1998年   1篇
  1997年   1篇
排序方式: 共有428条查询结果,搜索用时 15 毫秒
101.
Parasitic nematode worms infect a variety of crop plants worldwide. Roots infected by these worms start to look rather unsavory – with knot like tumors (galls) developing all over them. At the core of each gall, a worm matures and lays its eggs. Olmo et al. (2018) looked into the developmental reprogramming that leads to gall formation and found an Arabidopsis protein to be a necessary component in this process.  相似文献   
102.
The needles of Taxus wallichiana gave a taxoid 1-hydroxy- 2-deacetoxy-5-decinnamoyl-taxinine j, whose structure has been established by spectroscopic data and confirmed by X-ray crystallography. The taxoid possesses significant cytotoxic and immunomodulatory activity.  相似文献   
103.
Four 5′-deoxy-5′-nipecotic acid substituted pyrimidine nucleosides were synthesized and characterized. Their inhibitory activities towards ribonuclease A (RNase A) have been studied by enzyme kinetics and docking experiments. All inhibition constants obtained were in the sub-millimolar range. Biochemical analysis shows that the uridine derivative is more potent than the corresponding thymidine derivatives and that the inhibition is competitive in nature. For thymidine derivatives, the 3′-hydroxy group plays an important role in binding as well as in inhibition. Docking studies also support the experimental results. In the docking conformation the uridine derivative was found to bind to the P1P2 subsite with the acid group within hydrogen bonding distance of the active site histidine residues.  相似文献   
104.
105.
106.
107.
108.
Proteins synthesized by the rough endoplasmic reticulum (RER) co-translationally cross the membrane through the pore of a ribosome-bound translocon (RBT) complex. Although this pore is also permeable to small molecules, it is generally thought that barriers to their permeation prevent the cyclical process of protein translation from affecting the permeability of the RER. We tested this hypothesis by culturing Chinese hamster ovary-S cells with inhibitors of protein translation that affect the occupancy of RBTs by nascent proteins and then permeabilizing the plasma membrane and measuring the permeability of the RER to a small molecule, 4-methyl-umbelliferyl-alpha-d-glucopyranoside (4-MalphaG). The premature or normal release of nascent proteins by puromycin or pactamycin, respectively, increased the permeability of the RER to 4-MalphaG by 20-30%. In contrast, inhibition of elongation and the release of nascent proteins by cycloheximide did not increase the permeability, but it prevented the increase in permeability by pactamycin. We conclude that the permeability of the RER is coupled to protein translation by a simple gating mechanism whereby a nascent protein blocks the pore of a RBT during translation, but after release of the nascent protein the pore is permeable to small molecules as long as an empty ribosome remains bound to the translocon.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号