首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   8篇
  85篇
  2022年   3篇
  2021年   3篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2012年   4篇
  2011年   9篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   5篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   5篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1967年   5篇
  1957年   1篇
  1954年   1篇
排序方式: 共有85条查询结果,搜索用时 0 毫秒
41.
Genetically identical populations of unicellular organisms often show marked variation in some phenotypic traits. To investigate the molecular causes and possible biological functions of this phenotypic noise, it would be useful to have a method to identify genes whose expression varies stochastically on a certain time scale. Here, we developed such a method and used it for identifying genes with high levels of phenotypic noise in Salmonella enterica ssp. I serovar Typhimurium (S. Typhimurium). We created a genomic plasmid library fused to a green fluorescent protein (GFP) reporter and subjected replicate populations harboring this library to fluctuating selection for GFP expression using fluorescent-activated cell sorting (FACS). After seven rounds of fluctuating selection, the populations were strongly enriched for promoters that showed a high amount of noise in gene expression. Our results indicate that the activity of some promoters of S. Typhimurium varies on such a short time scale that these promoters can absorb rapid fluctuations in the direction of selection, as imposed during our experiment. The genomic fragments that conferred the highest levels of phenotypic variation were promoters controlling the synthesis of flagella, which are associated with virulence and host–pathogen interactions. This confirms earlier reports that phenotypic noise may play a role in pathogenesis and indicates that these promoters have among the highest levels of noise in the S. Typhimurium genome. This approach can be applied to many other bacterial and eukaryotic systems as a simple method for identifying genes with noisy expression.  相似文献   
42.
The mammalian intestine is colonized by a dense bacterial community, called microbiota. The microbiota shields from intestinal infection (colonization resistance). Recently, we have shown that enteropathogenic Salmonella spp. can exploit inflammation to compete with the intestinal microbiota. The mechanisms explaining the enhanced pathogen growth in the inflamed intestine are elusive. Here, we analysed the function of bacterial flagella in the inflamed intestine using a mouse model for acute Salmonella Typhimurium enterocolitis. Mutations affecting flagellar assembly (Fla-) and chemotaxis (Che-) impaired the pathogen's fitness in the inflamed intestine, but not in the normal gut. This was attributable to a localized source of high-energy nutrients (e.g. galactose-containing glyco-conjugates, mucin) released as an element of the mucosal defence. Motility allows Salmonella Typhimurium to benefit from these nutrients and utilize them for enhanced growth. Thus, nutrient availability contributes to enhanced pathogen growth in the inflamed intestine. Strategies interfering with bacterial motility or nutrient availability might offer starting points for therapeutic approaches.  相似文献   
43.
The study of protein phosphorylation has grown exponentially in recent years, as it became evident that important cellular functions are regulated by phosphorylation and dephosphorylation of proteins on serine, threonine and tyrosine residues. The use of immobilized metal affinity chromatography (IMAC) to enrich phosphopeptides from peptide mixtures has been shown to be useful especially prior to mass spectrometric analysis. For the selective enrichment applying solid-phase extraction (SPE) of phosphorylated peptides, we introduce poly(glycidyl methacrylate/divinylbenzene) (GMD) derivatized with imino-diacetic acid (IDA) and bound Fe(III) as a material. GMD is rapidly synthesized and the resulting free epoxy groups enable an easy access to further derivatization with, e.g., IDA. Electron microscopy showed that the synthesized GMD-IDA-Fe(III) for SPE has irregular agglomerates of spherical particles. Inductively coupled plasma (ICP) analysis resulted in a metal capacity of Fe(III) being 25.4 micromol/mL. To enable on-line preconcentration and desalting in one single step, GMD-IDA-Fe(III) and Silica C18 were united in one cartridge. Methyl esterification (ME) of free carboxyl groups was carried out to prevent binding of nonphosphorylated peptides to the IMAC function. The recovery for a standard phosphopeptide using this SPE method was determined to be 92%. The suitability of the established system for the selective enrichment and analysis of model proteins phosphorylated at different amino acid residues was evaluated stepwise. After successful enrichment of beta-casein deriving phosphopeptides, the established system was extended to the analysis of in vitro phosphorylated proteins, e.g. deriving from glutathione-S-transferase tagged extracellular signal regulated kinase 2 (GST-ERK2).  相似文献   
44.
Heart failure (HF) produces important alterations in currents underlying cardiac repolarization, but the transmural distribution of such changes is unknown. We therefore recorded action potentials and ionic currents in cells isolated from the endocardium, midmyocardium, and epicardium of the left ventricle from dogs with and without tachypacing-induced HF. HF greatly increased action potential duration (APD) but attenuated APD heterogeneity in the three regions. Early afterdepolarizations (EADs) were observed in all cell types of failing hearts but not in controls. Inward rectifier K(+) current (I(K1)) was homogeneously reduced by approximately 41% (at -60 mV) in the three cell types. Transient outward K(+) current (I(to1)) was decreased by 43-45% at +30 mV, and the slow component of the delayed rectifier K(+) current (I(Ks)) was significantly downregulated by 57%, 49%, and 58%, respectively, in epicardial, midmyocardial, and endocardial cells, whereas the rapid component of the delayed rectifier K(+) current was not altered. The results indicate that HF remodels electrophysiology in all layers of the left ventricle, and the downregulation of I(K1), I(to1), and I(Ks) increases APD and favors occurrence of EADs.  相似文献   
45.
46.
Most mucosal surfaces of the mammalian body are colonized by microbial communities (“microbiota”). A high density of commensal microbiota inhabits the intestine and shields from infection (“colonization resistance”). The virulence strategies allowing enteropathogenic bacteria to successfully compete with the microbiota and overcome colonization resistance are poorly understood. Here, we investigated manipulation of the intestinal microbiota by the enteropathogenic bacterium Salmonella enterica subspecies 1 serovar Typhimurium (S. Tm) in a mouse colitis model: we found that inflammatory host responses induced by S. Tm changed microbiota composition and suppressed its growth. In contrast to wild-type S. Tm, an avirulent invGsseD mutant failing to trigger colitis was outcompeted by the microbiota. This competitive defect was reverted if inflammation was provided concomitantly by mixed infection with wild-type S. Tm or in mice (IL10−/−, VILLIN-HACL4-CD8) with inflammatory bowel disease. Thus, inflammation is necessary and sufficient for overcoming colonization resistance. This reveals a new concept in infectious disease: in contrast to current thinking, inflammation is not always detrimental for the pathogen. Triggering the host's immune defence can shift the balance between the protective microbiota and the pathogen in favour of the pathogen.  相似文献   
47.
48.
49.
The decomposition of marine plankton in two-chamber, seawater-filled microbial fuel cells (MFCs) has been investigated and related to resulting chemical changes, electrode potentials, current efficiencies, and microbial diversity. Six experiments were run at various discharge potentials, and a seventh served as an open-circuit control. The plankton consisted of a mixture of freshly captured phytoplankton and zooplankton (0.21 to 1 mm) added at an initial batch concentration of 27.5 mmol liter−1 particulate organic carbon (OC). After 56.7 days, between 19.6 and 22.2% of the initial OC remained, sulfate reduction coupled to OC oxidation accounted for the majority of the OC that was degraded, and current efficiencies (of the active MFCs) were between 11.3 and 15.5%. In the open-circuit control cell, anaerobic plankton decomposition (as quantified by the decrease in total OC) could be modeled by three terms: two first-order reaction rate expressions (0.79 day−1 and 0.037 day−1, at 15°C) and one constant, no-reaction term (representing 10.6% of the initial OC). However, in each active MFC, decomposition rates increased during the third week, lagging just behind periods of peak electricity generation. We interpret these decomposition rate changes to have been due primarily to the metabolic activity of sulfur-reducing microorganisms at the anode, a finding consistent with the electrochemical oxidization of sulfide to elemental sulfur and the elimination of inhibitory effects of dissolved sulfide. Representative phylotypes, found to be associated with anodes, were allied with Delta-, Epsilon-, and Gammaproteobacteria as well as the Flavobacterium-Cytophaga-Bacteroides and Fusobacteria. Based upon these results, we posit that higher current efficiencies can be achieved by optimizing plankton-fed MFCs for direct electron transfer from organic matter to electrodes, including microbial precolonization of high-surface-area electrodes and pulsed flowthrough additions of biomass.  相似文献   
50.
Comparative analysis of molecular sequence data is essential for reconstructing the evolutionary histories of species and inferring the nature and extent of selective forces shaping the evolution of genes and species. Here, we announce the release of Molecular Evolutionary Genetics Analysis version 5 (MEGA5), which is a user-friendly software for mining online databases, building sequence alignments and phylogenetic trees, and using methods of evolutionary bioinformatics in basic biology, biomedicine, and evolution. The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models (nucleotide or amino acid), inferring ancestral states and sequences (along with probabilities), and estimating evolutionary rates site-by-site. In computer simulation analyses, ML tree inference algorithms in MEGA5 compared favorably with other software packages in terms of computational efficiency and the accuracy of the estimates of phylogenetic trees, substitution parameters, and rate variation among sites. The MEGA user interface has now been enhanced to be activity driven to make it easier for the use of both beginners and experienced scientists. This version of MEGA is intended for the Windows platform, and it has been configured for effective use on Mac OS X and Linux desktops. It is available free of charge from http://www.megasoftware.net.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号