首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   8篇
  85篇
  2022年   3篇
  2021年   3篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2012年   4篇
  2011年   9篇
  2010年   3篇
  2009年   1篇
  2008年   3篇
  2007年   5篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2002年   5篇
  2000年   1篇
  1999年   3篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1981年   1篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1967年   5篇
  1957年   1篇
  1954年   1篇
排序方式: 共有85条查询结果,搜索用时 0 毫秒
11.
Promotion of peroxidase activity in the cell wall of Nicotiana   总被引:3,自引:1,他引:2       下载免费PDF全文
Peroxidase catalyzes the oxidation of indole-3-acetic acid. The primary products of this reaction stimulate growth in plants. Therefore, our concept is that an increase in peroxidase activity will increase the effect of indole-3-acetic acid as a growth hormone. Our objective was to study the effect of 2,3,5-triiodobenzoic acid, a growth regulator, on isoperoxidases in the cell wall and cytoplasm of Nicotiana. Isoperoxidases from the cell wall and cytoplasmic fractions were separated by acrylamide gel electrophoresis. We found that 2,3,5-triiodobenzoic acid and indole-3-acetic acid increase peroxidase activity in the cell wall. Since both 2,3,5-triiodobenzoic acid and indole-3-acetic acid increase the activity of the same isoperoxidase, we conclude that 2,3,5-triiodobenzoic acid synergizes rather than antagonizes auxin action, and we suggest that this increase in indole-3-acetic acid oxidase activity sensitizes plant tissues to auxin.  相似文献   
12.
H Stecher  O Prezhdo  J Das  R K Crouch  K Palczewski 《Biochemistry》1999,38(41):13542-13550
Photoisomerization of 11-cis-retinal to all-trans-retinal triggers phototransduction in the retinal photoreceptor cells and causes ultimately the sensation of vision. 11-cis-Retinal is enzymatically regenerated through a complex set of reactions in adjacent retinal pigment epithelial cells (RPE). In this study using all-trans-9-desmethylretinol (lacking the C(19) methyl group) and all-trans-13-desmethylretinol (lacking the C(20) methyl group), we explored the effects of C(19) and C(20) methyl group removals on isomerization of these retinols in RPE microsomes. The C(19) methyl group may be involved in the substrate activation, whereas the C(20) methyl group causes steric hindrance with a proton in position C(10) of 11-cis-retinol; thus, removal of this group could accelerate isomerization. We found that all-trans-9-desmethylretinol and all-trans-13-desmethylretinol are isomerized to their corresponding 11-cis-alcohols, although with lower efficiencies than isomerization of all-trans-retinol to 11-cis-retinol. These findings make the mechanism of isomerization through the C(19) methyl group unlikely, because in the case of 9-desmethylretinol, the isomerization would have to progress by proton abstraction from electron-rich olefinic C(9). The differences between all-trans-retinol, all-trans-9-desmethylretinol, and all-trans-13-desmethylretinol appear to be a consequence of the enzymatic properties, and binding affinities of the isomerization system, rather than differences in the chemical or thermodynamic properties of these compounds. This observation is also supported by quantum chemical calculations. It appears that both methyl groups are not essential for the isomerization reaction and are not likely involved in formation of a transition stage during the isomerization process.  相似文献   
13.
The host''s immune system plays a key role in modulating growth of pathogens and the intestinal microbiota in the gut. In particular, inflammatory bowel disorders and pathogen infections induce shifts of the resident commensal microbiota which can result in overgrowth of Enterobacteriaceae (“inflammation-inflicted blooms”). Here, we investigated competition of the human pathogenic Salmonella enterica serovar Typhimurium strain SL1344 (S. Tm) and commensal E. coli in inflammation-inflicted blooms. S. Tm produces colicin Ib (ColIb), which is a narrow-spectrum protein toxin active against related Enterobacteriaceae. Production of ColIb conferred a competitive advantage to S. Tm over sensitive E. coli strains in the inflamed gut. In contrast, an avirulent S. Tm mutant strain defective in triggering gut inflammation did not benefit from ColIb. Expression of ColIb (cib) is regulated by iron limitation and the SOS response. CirA, the cognate outer membrane receptor of ColIb on colicin-sensitive E. coli, is induced upon iron limitation. We demonstrate that growth in inflammation-induced blooms favours expression of both S. Tm ColIb and the receptor CirA, thereby fuelling ColIb dependent competition of S. Tm and commensal E. coli in the gut. In conclusion, this study uncovers a so-far unappreciated role of inflammation-inflicted blooms as an environment favouring ColIb-dependent competition of pathogenic and commensal representatives of the Enterobacteriaceae family.  相似文献   
14.
To simplify and facilitate beating heart (i.e., off-pump), minimally invasive coronary artery bypass surgery, a new coronary anastomotic connector, the Trinity Clip, is developed based on the excimer laser-assisted nonocclusive anastomosis technique. The Trinity Clip connector enables simplified, sutureless, and nonocclusive connection of the graft to the coronary artery, and an excimer laser catheter laser-punches the opening of the anastomosis. Consequently, owing to the complete nonocclusive anastomosis construction, coronary conditioning (i.e., occluding or shunting) is not necessary, in contrast to the conventional anastomotic technique, hence simplifying the off-pump bypass procedure. Prior to clinical application in coronary artery bypass grafting, the safety and quality of this novel connector will be evaluated in a long-term experimental porcine off-pump coronary artery bypass (OPCAB) study. In this paper, we describe how to evaluate the coronary anastomosis in the porcine OPCAB model using various techniques to assess its quality. Representative results are summarized and visually demonstrated.  相似文献   
15.
Zusammenfassung Der Nostoc-Schleim besitzt ein Gerüst aus submikroskopischen Zellulosefibrillen, die ineinander verwoben und stellenweise verbändert sind. Dieses Gerüst verleiht dem Schleim seine Steifheit und eine gewisse Elastizität. Es scheint, daß der bekannte Unterschied zwischen der Formbeständigkeit der Pflanzenschleime und dem eher flüssigen Zustand der tierischen Schleime durch das Auftreten oder Fehlen eines submikroskopischen Schleimgerüstes bedingt ist.Herrn Professor Dr. F. Baltzer, Bern, zum 70. Geburtstag zugeeignet.  相似文献   
16.
17.
Most mucosal surfaces of the mammalian body are colonized by microbial communities (“microbiota”). A high density of commensal microbiota inhabits the intestine and shields from infection (“colonization resistance”). The virulence strategies allowing enteropathogenic bacteria to successfully compete with the microbiota and overcome colonization resistance are poorly understood. Here, we investigated manipulation of the intestinal microbiota by the enteropathogenic bacterium Salmonella enterica subspecies 1 serovar Typhimurium (S. Tm) in a mouse colitis model: we found that inflammatory host responses induced by S. Tm changed microbiota composition and suppressed its growth. In contrast to wild-type S. Tm, an avirulent invGsseD mutant failing to trigger colitis was outcompeted by the microbiota. This competitive defect was reverted if inflammation was provided concomitantly by mixed infection with wild-type S. Tm or in mice (IL10−/−, VILLIN-HACL4-CD8) with inflammatory bowel disease. Thus, inflammation is necessary and sufficient for overcoming colonization resistance. This reveals a new concept in infectious disease: in contrast to current thinking, inflammation is not always detrimental for the pathogen. Triggering the host's immune defence can shift the balance between the protective microbiota and the pathogen in favour of the pathogen.  相似文献   
18.
19.
Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by production of the Rho GTPase-glucosylating toxins A and B. Recently emerging hypervirulent Clostridium difficile strains additionally produce the binary ADP-ribosyltransferase toxin CDT (Clostridium difficile transferase), which ADP-ribosylates actin and inhibits actin polymerization. Thus far, the role of CDT as a virulence factor is not understood. Here we report by using time-lapse- and immunofluorescence microscopy that CDT and other binary actin-ADP-ribosylating toxins, including Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin, induce redistribution of microtubules and formation of long (up to >150 µm) microtubule-based protrusions at the surface of intestinal epithelial cells. The toxins increase the length of decoration of microtubule plus-ends by EB1/3, CLIP-170 and CLIP-115 proteins and cause redistribution of the capture proteins CLASP2 and ACF7 from microtubules at the cell cortex into the cell interior. The CDT-induced microtubule protrusions form a dense meshwork at the cell surface, which wrap and embed bacterial cells, thereby largely increasing the adherence of Clostridia. The study describes a novel type of microtubule structure caused by less efficient microtubule capture and offers a new perspective for the pathogenetic role of CDT and other binary actin-ADP-ribosylating toxins in host–pathogen interactions.  相似文献   
20.
A number of invertebrates are known to be sensitive to the polarization of light and use this trait in orientation, communication, or prey detection. In these animals polarization sensitivity tends to originate in rhabdomeric photoreceptors that are more or less uniformly straight and parallel. Typically, polarization sensitivity is based on paired sets of photoreceptors with orthogonal orientation of their rhabdomeres. Sunburst diving beetle larvae are active swimmers and highly visual hunters which could potentially profit from polarization sensitivity. These larvae, like those of most Dytiscids, have a cluster of six lens eyes or stemmata (designated E1 through E6) on each side of the head capsule. We examined the ultrastructure of the photoreceptor cells of the principal eyes (E1 and E2) of first instar larvae to determine whether their rhabdomeric organization could support polarization sensitivity. A detailed electron microscopical study shows that the proximal retinas of E1 and E2 are in fact composed of photoreceptors with predominantly parallel microvilli and that neighboring rhabdomeres are oriented approximately perpendicularly to one another. A similar organization is observed in the medial retina of E1, but not in the distal retinas of E1&2. Our findings suggest that T. marmoratus larvae might be able to analyze polarized light. If so, this could be used by freshly hatched larvae to find water or within the water to break the camouflage of common prey items such as mosquito larvae. Physiological and behavioral tests are planned to determine whether larvae of T. marmoratus can actually detect and exploit polarization signals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号