首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   170篇
  免费   2篇
  2023年   2篇
  2022年   5篇
  2021年   10篇
  2020年   4篇
  2019年   4篇
  2018年   11篇
  2017年   3篇
  2016年   10篇
  2015年   12篇
  2014年   14篇
  2013年   30篇
  2012年   13篇
  2011年   13篇
  2010年   3篇
  2009年   4篇
  2008年   1篇
  2007年   3篇
  2006年   5篇
  2005年   6篇
  2004年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1986年   1篇
  1977年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有172条查询结果,搜索用时 15 毫秒
81.
ten Have S  Boulon S  Ahmad Y  Lamond AI 《Proteomics》2011,11(6):1153-1159
Immuno-precipitation (IP) experiments using MS provide a sensitive and accurate way of characterising protein complexes and their response to regulatory mechanisms. Differences in stoichiometry can be determined as well as the reliable identification of specific binding partners. The quality control of IP and protein interaction studies has its basis in the biology that is being observed. Is that unusual protein identification a genuine novelty, or an experimental irregularity? Antibodies and the solid matrices used in these techniques isolate not only the target protein and its specific interaction partners but also many non-specific 'contaminants' requiring a structured analysis strategy. These methodological developments and the speed and accuracy of MS machines, which has been increasing consistently in the last 5 years, have expanded the number of proteins identified and complexity of analysis. The European Science Foundation's Frontiers in Functional Genomics programme 'Quality Control in Proteomics' Workshop provided a forum for disseminating knowledge and experience on this subject. Our aim in this technical brief is to outline clearly, for the scientists wanting to carry out this kind of experiment, and recommend what, in our experience, are the best potential ways to design an IP experiment, to help identify possible pitfalls, discuss important controls and outline how to manage and analyse the large amount of data generated. Detailed experimental methodologies have been referenced but not described in the form of protocols.  相似文献   
82.
The HslVU is the proteasome-related two component system composed of HslV peptidase and HslU chaperone. It is involved in the degradation of an array of intracellular proteins. The presence of HslVU homologs in pathogenic microbes and its absence in human makes it an antimicrobial drug target. The functional HslVU complex forms when HslV dodecamer is flanked at both ends by HslU hexamers. In the HslVU complex, eight residues at the carboxy termini of HslU subunits intercalate into a clefts between two adjacent HslV subunits causing a conformational change in the active site of HslV which in turn results in the allosteric activation of HslV peptidase. Here, we report small molecules capable of activating HslV peptidase in the absence of its natural activator HslU ATPase. For this purpose, virtual screening of an in-house library of synthetic and natural compounds was performed to find out ligands mimicking the interaction of HslU carboxy terminus with HslV dodecamer. The benzimidazole, quinazoline and chromone derivatives were suggested by ligand docking to bind at the HslU carboxy termini intercalation pockets in the HslV dodecamer. This was confirmed by HslV activation and isothermal titration calorimetry assays with these compounds that gave ED50 in sub-micromolar range (0.6–1.5 μM). The results showed for the first time that small, extracellular non-peptidic molecules can allosterically activate the peptide hydrolytic activity of HslV which in turn would initiate intracellular proteolysis.  相似文献   
83.
Defects in centrosome and cilium function are associated with phenotypically related syndromes called ciliopathies. Centriolar satellites are centrosome-associated structures, defined by the protein PCM1, that are implicated in centrosomal protein trafficking. We identify Cep72 as a PCM1-interacting protein required for recruitment of the ciliopathy-associated protein Cep290 to centriolar satellites. Loss of centriolar satellites by depletion of PCM1 causes relocalization of Cep72 and Cep290 from satellites to the centrosome, suggesting that their association with centriolar satellites normally restricts their centrosomal localization. We identify interactions between PCM1, Cep72, and Cep290 and find that disruption of centriolar satellites by overexpression of Cep72 results in specific aggregation of these proteins and the BBSome component BBS4. During ciliogenesis, BBS4 relocalizes from centriolar satellites to the primary cilium. This relocalization occurs normally in the absence of centriolar satellites (PCM1 depletion) but is impaired by depletion of Cep290 or Cep72, resulting in defective ciliary recruitment of the BBSome subunit BBS8. We propose that Cep290 and Cep72 in centriolar satellites regulate the ciliary localization of BBS4, which in turn affects assembly and recruitment of the BBSome. Finally, we show that loss of centriolar satellites in zebrafish leads to phenotypes consistent with cilium dysfunction and analogous to those observed in human ciliopathies.  相似文献   
84.
85.
The development of the microalgal industry requires advances in every aspect of microalgal biotechnology. In this regard, the availability of genetic engineering tools for industrially-promising species is key. As Scenedesmus almeriensis has promise for industrial use, we describe here an Agrobacterium-based methodology that allows stable genetic transformation of it for the first time, thus opening the way to its genetic manipulation. Transformation was accomplished using two different antibiotic resistance genes [hygromicine phophotransferase (hpt) and Shble] and it is credited by PCR amplification of both hpt/Shble and GUS genes and by the β-glucuronidase activity of transformed cells. Nevertheless, the single 35S promoter seems unable to direct gene expression to a convenient level in S. almeriensis as suggested by the low GUS enzymatic activity. Temperature was critical for the transformation efficiency.  相似文献   
86.
In this study, in planta transformation of tomato (Solanum lycopersicum L.), using fruit injection and floral dip, is reported. Agrobacterium tumefaciens strain EHA 105 containing one of three constructs, i.e., pROKIIAP1GUSint (carrying the Apetala 1 [AP1] gene), pROKIILFYGUSint (carrying the LEAFY [LFY] gene), or p35SGUSint (carrying the β-glucuronidase [GUS] gene), was used for plant transformation. For fruit injection transformation, no significant effects (p > 0.05) of the construct used were observed. The highest frequency of transformation was obtained following 48-h incubation of tomato fruit with bacterial cells harboring either one of the three constructs; transformation frequencies of 17%, 19%, and 21% for AP1, LFY, and GUS gene constructs, respectively, were obtained. When fruit maturity was evaluated in fruit injection experiments, mature red fruit resulted in higher frequency of transformants than immature green fruit with 40%, 35%, and 42% for AP1, LFY, and GUS gene constructs, respectively. For floral dip transformation, a higher number of transformants was obtained when the GUS gene construct was used instead of either the AP1 or LFY gene construct, thus suggesting a possible inhibitory effect of the flowering genes used. When flowers were transformed prior to rather than following pollination, they yielded a higher transformation frequency, 12% for the LFY construct and 23% for the GUS construct (p < 0.05), although no transformant was obtained with the AP1 gene construct. All putative GUS-positive transformants were analyzed using polymerase chain reaction and confirmed for the presence of the transgene. Compared to control plants, transgenic plants carrying either the AP1 or LFY transgene flowered earlier and showed several different morphological characters.  相似文献   
87.
88.
Soil nematodes are a foremost component of terrestrial biodiversity; they display a whole gamut of trophic guilds and life strategies, and by their activity, affect major ecosystem process, such as organic matter degradation and carbon cycling. Based on nematodes'' functional types, nematode community indices have been developed, and can be used to link variation in nematodes community composition and ecosystem processes. Yet, the use of these indices has been mainly restricted to anthropogenic stresses. In this study, we propose to expand the use of nematodes'' derived ecological indices to link soil and climate properties with soil food webs, and ecosystem processes that all vary along steep elevation gradients. For this purpose, we explored how elevation affects the trophic and functional diversity of nematode communities sampled every 300 m, from about 1,000 m to 3,700 m above sea level, across four transects in the lesser Himalayan range of Jammu and Kashmir. We found that (a) the trophic and functional diversity of nematodes increases with elevation; (b) differences in nematodes communities generate habitat‐specific functional diversity; (c) the maturity index (ΣMI) increases with elevation, while the enrichment index decreases, indicating less mature and less productive ecosystems, enhanced fungal‐based energy flow, and a predominant role of nematodes in generating carbon influxes at high‐elevation sites. We thus confirm that the functional contribution of soil nematodes to belowground ecosystem processes, including carbon and energy flow, is stronger at high elevation. Overall, this study highlights the central importance of nematodes in sustaining soil ecosystems and brings insights into their functional role, particularly in alpine and arctic soils.  相似文献   
89.
MALAT1, an abundant lncRNA specifically localized to nuclear speckles, regulates alternative-splicing (AS). The molecular basis of its role in AS remains poorly understood. Here, we report three conserved, thermodynamically stable, parallel RNA-G-quadruplexes (rG4s) present in the 3′ region of MALAT1 which regulates this function. Using rG4 domain-specific RNA-pull-down followed by mass-spectrometry, RNA-immuno-precipitation, and imaging, we demonstrate the rG4 dependent localization of Nucleolin (NCL) and Nucleophosmin (NPM) to nuclear speckles. Specific G-to-A mutations that abolish rG4 structures, result in the localization loss of both the proteins from speckles. Functionally, disruption of rG4 in MALAT1 phenocopies NCL knockdown resulting in altered pre-mRNA splicing of endogenous genes. These results reveal a central role of rG4s within the 3′ region of MALAT1 orchestrating AS.  相似文献   
90.
The study was planned to evaluate the inter, and intra population genetic variation in general protein banding pattern in Oestrus ovis larvae, by using 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE). The larvae were collected from slaughtered goats head from five different locations (AAS, PN, LA, GM, and BC) of Karachi, Pakistan. The data obtained was subjected to POPGENE (Population Genetic Analysis) software for analysis. The polymorphic loci within populations ranged from 45.45% to 90.91%. Polymorphic loci observed in all populations were 90.91%. The expected heterozygosity observed was 0.182 ± 0.096 in all populations. The chi-square test showed 5 out of 11 loci at H-W equilibrium. The overall fixation index (FST) value was 0.108, showing that the likelihood of subpopulations being differentiated from one another is about 11 percent. The gene flow value (Nm = 2.065) was higher, showing that genes flow occurs between populations. The values of genetic identity were greater, and genetic distance were smaller among all the populations, which means that all the populations were more alike and closer to each other. It was concluded that there was no sympatric and parapatric population differentiation observed among all the population of O. ovis and the populations of the five different locations were not genetically and reproductively isolated from each other.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号