首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   456篇
  免费   5篇
  2023年   2篇
  2022年   5篇
  2021年   16篇
  2020年   11篇
  2019年   11篇
  2018年   11篇
  2017年   13篇
  2016年   20篇
  2015年   16篇
  2014年   30篇
  2013年   44篇
  2012年   33篇
  2011年   27篇
  2010年   15篇
  2009年   21篇
  2008年   21篇
  2007年   19篇
  2006年   18篇
  2005年   9篇
  2004年   8篇
  2003年   4篇
  2002年   3篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1992年   9篇
  1991年   2篇
  1990年   5篇
  1989年   7篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1985年   7篇
  1984年   7篇
  1982年   8篇
  1981年   5篇
  1980年   3篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   4篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有461条查询结果,搜索用时 46 毫秒
161.
162.
Abstract

Migration is a biologically distinct and unique phenomenon that enables the birds to migrate twice-a-year between the breeding and wintering grounds. These movements are known as spring and autumn migration, respectively. Depending on their inherent programming, the migratory birds may fly during day or night or both. Different environmental factors such as, temperature, food, predator pressure and physiological demands of energy storage and expenditure, contribute to the pattern of migrations, day or nighttime. Since, most of them are nighttime migrants they have to make dramatic changes in their physiology and behavior to transform them from being diurnal to predominantly nocturnal. These changes result in different life history stages (LHSs) such as migration, reproduction and molt, in their annual cycle, which are regulated by endogenous circadian and circannual clocks. As a result, the birds start preparing well in advance for the approaching LHS. The present review focuses on behavioral strategies of a nocturnal migrant and understanding of the possible physiological responses to ensure successful migration.  相似文献   
163.
Rice being a staple cereal is extremely susceptible towards abiotic stresses. Drought and salinity are two vital factors limiting rice cultivation in Eastern Indo-Gangetic Plains (EIGP). Present study has intended to evaluate the consequences of salinity stress on selected drought tolerant rice genotypes at the most susceptible seedling stage with an aim to identify the potential multi-stress (drought and salt) tolerant rice genotype of this region. Genotypic variation was obvious in all traits related to drought and salt susceptibility. IR84895-B-127-CRA-5-1-1, one of the rice genotypes studied, exhibited exceptional drought and salinity tolerance. IR83373-B-B-25-3-B-B-25-3 also displayed enhanced drought and salt tolerance following IR84895-B-127-CRA-5-1-1. Variations were perceptible in different factors involving photosynthetic performance, proline content, lipid peroxidation, K+/Na+ ratio. Accumulation of reactive oxygen species (ROS) disintegrated cellular and sub-cellular membrane leading to decreased photosynthetic activities. Therefore, accumulation and detoxification of reactive oxygen species was also considered as a major determinant of salt tolerance. IR84895-B-127-CRA-5-1-1 showed improved ROS detoxification mediated by antioxidant enzymes. IR84895-B-127-CRA-5-1-1 seedlings also displayed significant recovery after removal of salt stress. The results established a direct association of ROS scavenging with improved physiological activities and salt tolerance. The study also recommended IR84895-B-127-CRA-5-1-1 for improved crop performance in both drought and saline environments of EIGP. These contrasting rice genotypes may assist in understanding the multiple stress associated factors in concurrent drought and salt tolerant rice genotypes.  相似文献   
164.
The human visual cortex enables visual perception through a cascade of hierarchical computations in cortical regions with distinct functionalities. Here, we introduce an AI-driven approach to discover the functional mapping of the visual cortex. We related human brain responses to scene images measured with functional MRI (fMRI) systematically to a diverse set of deep neural networks (DNNs) optimized to perform different scene perception tasks. We found a structured mapping between DNN tasks and brain regions along the ventral and dorsal visual streams. Low-level visual tasks mapped onto early brain regions, 3-dimensional scene perception tasks mapped onto the dorsal stream, and semantic tasks mapped onto the ventral stream. This mapping was of high fidelity, with more than 60% of the explainable variance in nine key regions being explained. Together, our results provide a novel functional mapping of the human visual cortex and demonstrate the power of the computational approach.  相似文献   
165.
An absolute or relative deficiency of pancreatic β-cells mass and functionality is a crucial pathological feature common to type 1 diabetes mellitus and type 2 diabetes mellitus. Glucagon-like-peptide-1 receptor (GLP1R) agonists have been the focus of considerable research attention for their ability to protect β-cell mass and augment insulin secretion with no risk of hypoglycemia. Presently commercially available GLP1R agonists are peptides that limit their use due to cost, stability, and mode of administration. To address this drawback, strategically designed distinct sets of small molecules were docked on GLP1R ectodomain and compared with previously known small molecule GLP1R agonists. One of the small molecule PK2 (6-((1-(4-nitrobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-6H-indolo[2,3-b]quinoxaline) displays stable binding with GLP1R ectodomain and induces GLP1R internalization and increasing cAMP levels. PK2 also increases insulin secretion in the INS-1 cells. The oral administration of PK2 protects against diabetes induced by multiple low-dose streptozotocin administration by lowering high blood glucose levels. Similar to GLP1R peptidic agonists, treatment of PK2 induces β-cell replication and attenuate β-cell apoptosis in STZ-treated mice. Mechanistically, this protection was associated with decreased thioredoxin-interacting protein expression, a potent inducer of diabetic β-cell apoptosis and dysfunction. Together, this report describes a small molecule, PK2, as an orally active nonpeptidic GLP1R agonist that has efficacy to preserve or restore functional β-cell mass.  相似文献   
166.
The deficiency of keto acid decarboxylase in maple syrup urine disease results in the accumulation of branched chain amino acids and their corresponding keto acids in tissues and body fluids. The effects of abnormal metabolites were investigated on neurotransmitter receptor binding in rat brain. alpha-Keto acids caused selective in vitro decrease in alpha-adrenergic, beta-adrenergic receptor binding in synaptosomal preparations from rat brain. No significant changes were observed in binding of cholinergic, GABA, and dopamine receptors binding in appropriate rat brain preparations. These results indicate that selective inhibition of adrenergic receptor binding by branched chain keto acids may presumably account for neural abnormality in maple syrup urine disease.  相似文献   
167.
168.
Formation of advanced glycation end products (AGE) is crucially involved in the several pathophysiologies associated with ageing and diabetes, for example arthritis, atherosclerosis, chronic renal insufficiency, Alzheimer’s disease, nephropathy, neuropathy, and cataracts. Because of devastating effects of AGE and the significance of bovine serum albumin (BSA) as a transport protein, this study was designed to investigate glycation-induced structural modifications in BSA and their functional consequences in breast cancer cell line (MCF-7). We incubated d-ribose with BSA and monitored formation of d-ribose-glycated BSA by observing changes in the intensity of fluorescence at 410 nm. NBT (nitro blue tetrazolium) assay was performed to confirm formation of keto-amine during glycation. Absorbance at 540 nm (fructosamine) increased markedly with time. Furthermore, intrinsic protein and 8-anilino-1-naphthalenesulfonate (ANS) fluorescence revealed marked conformational changes in BSA upon ribosylation. In addition, a fluorescence assay with thioflavin T (ThT) revealed a remarkable increase in fluorescence at 485 nm in the presence of glycated BSA. This suggests that glycation with d-ribose induced aggregation of BSA into amyloid-like deposits. Circular dichroism (CD) study of native and ribosylated BSA revealed molten globule formation in the glycation pathway of BSA. Functional consequences of ribosylated BSA on cancer cell line, MCF-7 was studied by MTT assay and ROS estimation. The results revealed cytotoxicity of ribosylated BSA on MCF-7 cells.  相似文献   
169.
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号