首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2367篇
  免费   98篇
  2465篇
  2024年   6篇
  2023年   7篇
  2022年   37篇
  2021年   63篇
  2020年   38篇
  2019年   39篇
  2018年   50篇
  2017年   53篇
  2016年   71篇
  2015年   84篇
  2014年   136篇
  2013年   167篇
  2012年   210篇
  2011年   201篇
  2010年   108篇
  2009年   96篇
  2008年   127篇
  2007年   126篇
  2006年   139篇
  2005年   93篇
  2004年   92篇
  2003年   93篇
  2002年   83篇
  2001年   16篇
  2000年   13篇
  1999年   11篇
  1998年   26篇
  1997年   13篇
  1996年   5篇
  1995年   14篇
  1994年   10篇
  1993年   13篇
  1992年   21篇
  1991年   23篇
  1990年   9篇
  1989年   16篇
  1988年   13篇
  1987年   14篇
  1985年   10篇
  1984年   14篇
  1983年   5篇
  1982年   10篇
  1980年   10篇
  1979年   12篇
  1978年   6篇
  1977年   14篇
  1975年   8篇
  1973年   8篇
  1972年   5篇
  1970年   5篇
排序方式: 共有2465条查询结果,搜索用时 0 毫秒
91.
Fast-growing callus, cell suspension and root cultures of Vernonia cinerea, a medicinal plant, were analyzed for the presence of alkaloids. Callus and root cultures were established from young leaf explants in Murashige and Skoog (MS) basal media supplemented with combinations of auxins and cytokinins, whereas cell suspension cultures were established from callus cultures. Maximum biomass of callus, cell suspension and root cultures were obtained in the medium supplemented with 1 mg/L alpha-naphthaleneacetic acid (NAA) and 5 mg/L benzylaminopurine (BA), 1.0 mg/L NAA and 0.1 mg/L BA and 1.5 mg/L NAA, respectively. The 5-week-old callus cultures resulted in maximum biomass and alkaloid contents (750 microg/g). Cell suspension growth and alkaloid contents were maximal in 20-day-old cultures and alkaloid contents were 1.15 mg/g. A 0.2-g sample of root tissue regenerated in semi-solid medium upon transfer to liquid MS medium containing 1.5 mg/L NAA regenerated a maximum increase in biomass of 6.3-fold over a period of 5 weeks. The highest root growth and alkaloid contents of 2 mg/g dry weight were obtained in 5-week-old cultures. Maximum alkaloid contents were obtained in root cultures in vitro compared to all others including the alkaloid content of in vivo obtained with aerial parts and roots (800 microg/g and 1.2 mg/g dry weight, respectively) of V. cinerea.  相似文献   
92.
An efficient shoot organogenesis system has been developed from mature plants of selected elite clones of Eucalyptus tereticornis Sm. Cultures were established using nodal explants taken from freshly coppice shoots cultured on Murashige and Skoog medium containing 58 mM sucrose, 0.7% (w/v) agar (MS medium) and supplemented with 2.5 μM benzyladenine (BA) and 0.5 μM α-naphthaleneacetic acid (NAA). Shoot organogenesis was achieved from leaf segments taken from elongated microshoots on MS medium supplemented with 5.0 μM BA and 1.0 μM 2,4-dichlorophenoxyacetic acid (2,4-D). The addition of cefotaxime to the medium promoted shoot differentiation, whereas carbenicillin and cephalexin inhibited shoot differentiation. Maximum shoot bud organogenesis (44.6%) occurred in explants cultured on MS medium supplemented with 5.0 μM BA, 1.0 μM 2,4-D and 500 mg/l cefotaxime. Leaf maturity influenced shoot regeneration, with maximum shoot organogeneisis (40.5%) occurring when the source of explants was the fifth leaf (14–16 days old) from the top of microshoot. Shoot organogenic potential also varied amongst the different clones of E. tereticornis. Random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) analyses indicated clonal uniformity of the newly formed shoots/plants, and these were also found to be true-to-type.  相似文献   
93.
Two genotypes showing differential immunity against Karnal bunt (Tilletia indica) were used to investigate the role of three members of cystatin gene family in growth stage dependent immunity in wheat (Triticum aestivum L.). Three members of cystatin gene family (WC1, WC2, and WC4) were cloned and sequenced. Analysis of sequenced data showed that there was 76–99% nucleotide and protein sequence identity between different genes of the wheat cystatin. In silico amino acid sequence analysis revealed the presence of a conserved signature pattern of residues and also the functional domains were presumed to be actively involved in imparting cysteine protease inhibition capability. The semi-quantitative and quantitative levels of these members were measured by means of RT-PCR, northern blotting, western blotting, and by ELISA techniques. The members of cystatin gene family were expressed in both resistant (HD 29) and susceptible genotypes (WH 542); however, the expression level was significantly (P < 0.001) higher in resistant compared to susceptible genotype at all the stages of wheat spikes. The patterns of expression of WC2, WC4 were similar except in the levels in S1 and S2 stages as it remained constant (P > 0.05) in contrary to WC1 family whose expression gradually increased from Sv to S2 stage. According to the intensity of the detected band in RT PCR, northern blot and western blot, WC1 family seems to be expressed more than the other gene families. The immunoassay results further showed that WC1 protein was abundantly expressed in resistant genotype and high expression was observed at the S2 stage as compared to susceptible genotype (P < 0.001) suggesting that low level of expression of WC1 in S2 stage is responsible for KB infection. The results of the present study clearly indicate the role of cystatin gene family in differential and stage dependent immunity against KB.  相似文献   
94.
In bacteria, biogenesis of cell wall at the division site requires penicillin-binding protein 3 (PBP3) (or Ftsl). Using pull-down, bacterial two-hybrid, and peptide-based interaction assays, we provide evidence that FtsW of Mycobacterium tuberculosis (FtsWMTB) interacts with PBP3 through two extracytoplasmic loops. Pro306 in the larger loop and Pro386 in the smaller loop of FtsW are crucial for these interactions. Fluorescence microscopy shows that conditional silencing of ftsW in Mycobacterium smegmatis prevents cell septation and positioning of PBP3 at mid-cell. Pull-down assays and conditional depletion of FtsW in M. smegmatis provide evidence that FtsZ, FtsW and PBP3 of mycobacteria are capable of forming a ternary complex, with FtsW acting as a bridging molecule. Bacterial three-hybrid analysis suggests that in M. tuberculosis, the interaction (unique to mycobacteria) of FtsZ with the cytosolic C-tail of FtsW strengthens the interaction of FtsW with PBP3. ftsW of M. smegmatis could be replaced by ftsW of M. tuberculosis. FtsWMTB could support formation of the FtsZ-FtsW-PBP3 ternary complex in M. smegmatis. Our findings raise the possibility that in the genus Mycobacterium binding of FtsZ to the C-tail of FtsW may modulate its interactions with PBP3, thereby potentially regulating septal peptidoglycan biogenesis.  相似文献   
95.
Niu H  Makmura L  Shen T  Sheth SS  Blair K  Friedman RA 《Genomics》2006,88(3):302-308
The Eya1(bor) mutant hypomorph contains an intracisternal A particle insertion in intron 7 of the Eya1 gene that results in a 50% reduction in wild-type mRNA levels. The homozygous mutants have middle and inner ear defects and variable kidney abnormalities. The severity of the disorder is affected by genetic background. In contrast to complete deafness and cochlear agenesis in the C3HeB/FeJ strain, F2 Eya1(bor/bor) mutants from an intercross between C3HeB/FeJ-Eya1(bor/+) and C57BL/6J showed variable auditory brain-stem responses and cochlear coiling. In this study, using these F2 Eya1(bor/bor) mutants, we have identified two major loci, Mead1 (modifier of Eya1-associated deafness 1) and Mead2, that are responsible for suppression of the original phenotypes. We have narrowed these two loci to 5.4 and 4.4 cM, respectively, in congenic lines. Quantitative PCR demonstrated that this modifying effect did not result from an increase in wild-type Eya1 mRNA, suggesting Mead1 and Mead2 are interacting directly or indirectly with Eya1 during inner ear development.  相似文献   
96.
Molecular iodine (I2) is known to inhibit the induction and promotion of N-methyl-n-nitrosourea-induced mammary carcinogenesis, to regress 7,12-dimethylbenz(a)anthracene-induced breast tumors in rat, and has also been shown to have beneficial effects in fibrocystic human breast disease. Cytotoxicity of iodine on cultured human breast cancer cell lines, namely MCF-7, MDA-MB-231, MDA-MB-453, ZR-75-1, and T-47D, is reported in this communication. Iodine induced apoptosis in all of the cell lines tested, except MDA-MB-231, shown by sub-G1 peak analysis using flow cytometry. Iodine inhibited proliferation of normal human peripheral blood mononuclear cells; however, it did not induce apoptosis in these cells. The iodine-induced apoptotic mechanism was studied in MCF-7 cells. DNA fragmentation analysis confirmed internucleosomal DNA degradation. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling established that iodine induced apoptosis in a time- and dose-dependent manner in MCF-7 cells. Iodine-induced apoptosis was independent of caspases. Iodine dissipated mitochondrial membrane potential, exhibited antioxidant activity, and caused depletion in total cellular thiol content. Western blot results showed a decrease in Bcl-2 and up-regulation of Bax. Immunofluorescence studies confirmed the activation and mitochondrial membrane localization of Bax. Ectopic Bcl-2 overexpression did not rescue iodine-induced cell death. Iodine treatment induces the translocation of apoptosis-inducing factor from mitochondria to the nucleus, and treatment of N-acetyl-L-cysteine prior to iodine exposure restored basal thiol content, ROS levels, and completely inhibited nuclear translocation of apoptosis-inducing factor and subsequently cell death, indicating that thiol depletion may play an important role in iodine-induced cell death. These results demonstrate that iodine treatment activates a caspase-independent and mitochondria-mediated apoptotic pathway.  相似文献   
97.
Exploding global population, rapid urbanization, salinization of soils, decreasing arable land availability, groundwater resources, and dynamic climatic conditions pose impending damage to our food security by reducing the grain quality and quantity. This issue is further compounded in arid and semi-arid regions due to the shortage of irrigation water and erratic rainfalls. Millets are gluten (a family of proteins)-free and cultivated all over the globe for human consumption, fuel, feed, and fodder. They provide nutritional security for the under- and malnourished. With the deployment of strategies like foliar spray, traditional/marker-assisted breeding, identification of candidate genes for the translocation of important minerals, and genome-editing technologies, it is now tenable to biofortify important millets. Since the bioavailability of iron and zinc has been proven in human trials, the challenge is to make such grains accessible. This review encompasses nutritional benefits, progress made, challenges being encountered, and prospects of enriching millet crops with essential minerals.  相似文献   
98.
The resistance of bacterial biofilms to antibiotic treatment has been attributed to the emergence of structurally heterogeneous microenvironments containing metabolically inactive cell populations. In this study, we use a three-dimensional individual-based cellular automata model to investigate the influence of nutrient availability and quorum sensing on microbial heterogeneity in growing biofilms. Mature biofilms exhibited at least three structurally distinct strata: a high-volume, homogeneous region sandwiched between two compact sections of high heterogeneity. Cell death occurred preferentially in layers in close proximity to the substratum, resulting in increased heterogeneity in this section of the biofilm; the thickness and heterogeneity of this lowermost layer increased with time, ultimately leading to sloughing. The model predicted the formation of metabolically dormant cellular microniches embedded within faster-growing cell clusters. Biofilms utilizing quorum sensing were more heterogeneous compared to their non-quorum sensing counterparts, and resisted sloughing, featuring a cell-devoid layer of EPS atop the substratum upon which the remainder of the biofilm developed. Overall, our study provides a computational framework to analyze metabolic diversity and heterogeneity of biofilm-associated microorganisms and may pave the way toward gaining further insights into the biophysical mechanisms of antibiotic resistance.  相似文献   
99.
Rice seedlings accumulate stainable amounts of the 104 and 90 kDa polypeptides in response to high temperature stress. We have purified and raised highly specific polyclonal antisera against both of these polypeptides. In western blotting experiments, we find that these proteins are accumulated to different extents in rice seedlings subjected to salinity (NaCl), water stress, low-temperature stress and exogenous abscisic acid application. These proteins also accumulated when rice seedlings grown in pots under natural conditions were subjected to water stress by withholding watering. Seedlings of Triticum aestivum, Sorghum bicolor, Pisum sativum, Zea mays, Brassica juncea and mycelium of Neurospora crassa showed accumulation of the immunological homologues of both the 104 and the 90 kDa polypeptides, in response to high-temperature stress. We have earlier shown that shoots of rice seedlings exposed to heat shock accumulate a 110 kDa polypeptide which is an immunological homologue of the yeast HSP 104 (Singla and Grover, Plant Mol Biol 22: 1177–1180, 1993). Employing anti-rice HSP 104 antibodies and anti-yeast HSP 104 antibodies together, we provide evidence that rice HSP 104 is different from the earlier characterized rice HSP 110.  相似文献   
100.
Neuropilin-1 (NRP1) was first described as a receptor for the axon guidance molecule, Semaphorin3A, regulating the development of the nervous system. It was later shown that NRP1 is an isoform-specific receptor for vascular endothelial growth factor (VEGF), specifically VEGF(165). Much interest has been placed on the role of the various VEGF isoforms in vascular biology. Here we report that blocking NRP1 function, using a recently described antibody that inhibits VEGF(165) binding to NRP1, surprisingly reduces VEGF(121)-induced migration and sprout formation of endothelial cells. Intrigued by this observation, direct binding studies of NRP1 to various VEGF isoforms were performed. We show that VEGF(121) binds directly to NRP1; however, unlike VEGF(165), VEGF(121) is not sufficient to bridge the NRP1.VEGFR2 complex. Additionally, we show that VEGFR2 enhances VEGF(165), but not VEGF(121) binding to NRP1. We propose a new model for NRP1 interactions with various VEGF isoforms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号