首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2356篇
  免费   100篇
  2024年   5篇
  2023年   7篇
  2022年   29篇
  2021年   63篇
  2020年   38篇
  2019年   39篇
  2018年   50篇
  2017年   53篇
  2016年   71篇
  2015年   84篇
  2014年   136篇
  2013年   167篇
  2012年   210篇
  2011年   201篇
  2010年   108篇
  2009年   96篇
  2008年   127篇
  2007年   126篇
  2006年   139篇
  2005年   93篇
  2004年   92篇
  2003年   93篇
  2002年   83篇
  2001年   16篇
  2000年   13篇
  1999年   11篇
  1998年   26篇
  1997年   13篇
  1996年   5篇
  1995年   14篇
  1994年   10篇
  1993年   13篇
  1992年   21篇
  1991年   23篇
  1990年   9篇
  1989年   16篇
  1988年   13篇
  1987年   14篇
  1985年   10篇
  1984年   14篇
  1983年   5篇
  1982年   10篇
  1980年   10篇
  1979年   12篇
  1978年   6篇
  1977年   14篇
  1975年   8篇
  1973年   8篇
  1972年   5篇
  1970年   5篇
排序方式: 共有2456条查询结果,搜索用时 31 毫秒
141.
A 26 residue peptide (Am 2766) with the sequence CKQAGESCDIFSQNCCVG-TCAFICIE-NH(2) has been isolated and purified from the venom of the molluscivorous snail, Conus amadis, collected off the southeastern coast of India. Chemical modification and mass spectrometric studies establish that Am 2766 has three disulfide bridges. C-terminal amidation has been demonstrated by mass measurements on the C-terminal fragments obtained by proteolysis. Sequence alignments establish that Am 2766 belongs to the delta-conotoxin family. Am 2766 inhibits the decay of the sodium current in brain rNav1.2a voltage-gated Na(+) channel, stably expressed in Chinese hamster ovary cells. Unlike delta-conotoxins have previously been isolated from molluscivorous snails, Am 2766 inhibits inactivation of mammalian sodium channels.  相似文献   
142.
A novel inhibitor of voltage-gated potassium channel was isolated and purified to homogeneity from the venom of the red scorpion Buthus tamulus. The primary sequence of this toxin, named BTK-2, as determined by peptide sequencing shows that it has 32 amino acid residues with six conserved cysteines. The molecular weight of the toxin was found to be 3452 Da. It was found to block the human potassium channel hKv1.1 (IC(50)=4.6 microM). BTK-2 shows 40-70% sequence similarity to the family of the short-chain toxins that specifically block potassium channels. Multiple sequence alignment helps to categorize the toxin in the ninth subfamily of the K+ channel blockers. The modeled structure of BTK-2 shows an alpha/beta scaffold similar to those of the other short scorpion toxins. Comparative analysis of the structure with those of the other toxins helps to identify the possible structure-function relationship that leads to the difference in the specificity of BTK-2 from that of the other scorpion toxins. The toxin can also be used to study the assembly of the hKv1.1 channel.  相似文献   
143.
144.
A substantial number of rat models have been used to research subarachnoid hemorrhage-induced cerebral vasospasm; however, controversy exists regarding which method of selection is appropriate for this species. This study was designed to provide extensive information about the three most popular subarachnoid hemorrhage rat models: the endovascular puncture model, the single-hemorrhage model, and the double-hemorrhage model. In this study, the basilar artery and posterior communicating artery were chosen for histopathological examination and morphometric analysis. Both the endovascular puncture model and single-hemorrhage model developed significant degrees of vasospasm, which were less severe when compared with the double-hemorrhage model. The endovascular puncture model and double-hemorrhage model both developed more vasospasms in the posterior communicating artery than in the basilar artery. The endovascular puncture model has a markedly high mortality rate and high variability in bleeding volume. Overall, the present study showed that the double-hemorrhage model in rats is a more suitable tool with which to investigate mechanism and therapeutic approaches because it accurately correlates with the time courses for vasospasm in humans.  相似文献   
145.
The role of the plasma membrane Ca(2+) pump (PMCA) is to remove excess Ca(2+) from the cytosol to maintain low intracellular Ca(2+) levels. Asp(1080) lies within an acidic sequence between the C-terminal inhibitory region and the catalytic core of PMCAs and is part of the caspase-3 recognition site of isoform 4b. Caspase-3 cuts immediately after this residue and activates the pump by removing the inhibitory region (Pászty, K., Verma, A. K., Padányi, R., Filoteo, A. G., Penniston, J. T., and Enyedi, A. (2002) J. Biol. Chem. 277, 6822-6829). Asp(1080) had not been believed to have any other role, but here we show that it also plays a critical role in the autoinhibition and calmodulin activation of PMCA4b. Site-specific mutation of Asp(1080) to Asn, Ala, or Lys in PMCA4b resulted in a substantial increase in the basal activity in the absence of calmodulin. All Asp(1080) mutants exhibited an increased affinity for calmodulin because of an increase in the rate of activation by calmodulin. This rate was higher when the inhibition was weaker, showing that a strong inhibitory interaction slows the activation rate. In contrast, mutating the nearby Asp(1077) had no effect on basal activity or calmodulin activation. We propose that the conserved Asp(1080), even though it is neither in the regulatory domain nor in the catalytic core, plays an essential role in inhibition by stabilizing the inhibited state of the enzyme.  相似文献   
146.
Sialic acid containing glycosphingolipids (gangliosides) are expressed on the surface of all mammalian cells and have been implicated in regulating various biological phenomena; however, the detailed signaling mechanisms involved in this process are not known. We report here a novel aspect of disialoganglioside, GD3-mediated regulation of cell proliferation and cell death via the recruitment of reactive oxygen species (ROS). A low concentration (2.5-10 microm) of GD3, incubated with human aortic smooth muscle cells for a short period of time (10-30 min), stimulates superoxide generation via the activation of both NADPH oxidase and NADH oxidase activity. This leads to downstream signaling leading to cell proliferation and apoptosis. However, [(3)H]GD3 incubated with the cells under such conditions was found in a trypsin-sensitive fraction that was separable from endogenous GD3. The exact mechanism causing ROS generation and downstream signaling remains to be elucidated. The uptake of GD3 was accompanied by a 2.5-fold stimulation in the activity of mitogen-activated protein (MAP) kinase and 5-fold stimulation in cell proliferation. Preincubation of cells with membrane-permeable antioxidants, pyrrolidine dithiocarbamate, and N-acetylcysteine abrogated the superoxide generation and cell proliferation. In contrast, at higher concentrations (50-200 microm) GD3 inhibited the generation of superoxides but markedly stimulated the generation of nitric oxide (NO) (10-fold compared with control). This in turn stimulated mitochondrial cytochrome c release and intrachromosomal DNA fragmentation, which lead to apoptosis. In sum, at a low concentration, GD3 recruits superoxides to activate p44 MAPK and stimulates cell proliferation. In contrast, at high concentrations GD3 recruits nitric oxide to scavenge superoxide radicals that triggered signaling events that led to apoptosis. These observations might have relevance in regard to the potential role of GD3 in aortic smooth muscle cell proliferation and apoptosis that may contribute to plaque rupture in atherosclerosis.  相似文献   
147.
Toxic effect of metal cations on female reproduction and gonadal functions was studied. Adult synchronized female rats were treated intraperitoneally with lead acetate and cadmium acetate separately and in combination (0.025, 0.05 and 0.1 mg/kg body wt) for 15 days. The metabolizing enzymes (17beta-hydroxy steroid oxidoreductase and UDP glucoronyl transferase) activities decreased with increasing dose showing significant change compared to control. Also, significant decrease in cytochrome P450 (CYP450) content was found after the treatment. Displacement of zinc bound to metallothionein was more in cadmium treated rats compared to other groups. In all these parameters, treatment in combination of lead and cadmium showed intermediate results indicating some kind of competition between the two metals. But the histological studies showed that combined treatment caused more cytotoxic effect than cadmium and lead alone. These results indicated that metal cations tested did have a direct inhibitory effect on metabolizing enzyme activities.  相似文献   
148.
In an earlier report, we had shown a 150-kDa protein termed as M150, isolated from the surface of activated macrophages, to possess costimulatory activity for CD4(+) T cells. Significantly, this protein was found to specifically elicit Th1 responses. In this study, we characterize M150, which belongs to a unique subset of the lysosome-associated membrane protein-1 glycoprotein. Interestingly, the costimulatory activity of M150 depends on its posttranslational modification, which has a distinct glycosylation pattern restricted to macrophages. Furthermore, it has been demonstrated that in addition to stimulating Th1-specific responses, M150 is also capable of driving differentiation of naive CD4(+) T cells into the Th1 subset. This altered posttranslational modification of housekeeping protein appears to represent a novel pathway by which APCs can additionally regulate T cell responses.  相似文献   
149.
Iodide is actively concentrated in the thyroid gland for thyroid hormone biosynthesis. Excess iodine has been observed to induce apoptosis in thyrocytes and mammary cells. The mechanism of iodine induced apoptosis is poorly understood. Among various cell organelles, mitochondria is known to provide conducive environment for the organification of iodine, i.e. iodination of different proteins. Mitochondria also play a central role in execution of apoptosis. To study the role of mitochondria in iodine induced apoptosis, we investigated the direct interaction of iodine and human breast mitochondria vis-a-vis its role in the initiation of apoptosis in vitro. We observed that mitochondria isolated from the tumor (TT) and extra-tumoral tissue (ET) of human breast display significant uptake of iodine. Mitochondrial proteins were observed to be predominantly iodinated in ET but not in TT mitochondria. Treatment with iodine showed an increase in mitochondrial permeability transition of TT and decrease in ET. Iodine induced released factor(s) other than cytochrome c from tumor mitochondria initiate(s) apoptosis in vitro, while those from ET mitochondria were non-apoptogenic in nature. To our knowledge, this is first report demonstrating that iodine acts differentially on mitochondria of tumor and extratumoral origin to release apoptogenic proteins from TT and has a protective effect on ET.  相似文献   
150.
AAA proteins remodel other proteins to affect a multitude of biological processes. Their power to remodel substrates must lie in their capacity to couple substrate binding to conformational changes via cycles of nucleotide binding and hydrolysis, but these relationships have not yet been deciphered for any member. We report that when one AAA protein, Hsp104, engages polypeptide at the C-terminal peptide-binding region, the ATPase cycle of the C-terminal nucleotide-binding domain (NBD2) drives a conformational change in the middle region. This, in turn, drives ATP hydrolysis in the N-terminal ATPase domain (NBD1). This interdomain communication pathway can be blocked by mutation in the middle region or bypassed by antibodies that bind there, demonstrating the crucial role this region plays in transducing signals from one end of the molecule to the other.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号