首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2808篇
  免费   132篇
  2940篇
  2024年   7篇
  2023年   12篇
  2022年   43篇
  2021年   66篇
  2020年   43篇
  2019年   45篇
  2018年   62篇
  2017年   72篇
  2016年   84篇
  2015年   110篇
  2014年   152篇
  2013年   197篇
  2012年   240篇
  2011年   232篇
  2010年   125篇
  2009年   112篇
  2008年   162篇
  2007年   153篇
  2006年   162篇
  2005年   106篇
  2004年   108篇
  2003年   114篇
  2002年   102篇
  2001年   38篇
  2000年   28篇
  1999年   25篇
  1998年   32篇
  1997年   17篇
  1996年   8篇
  1995年   19篇
  1994年   9篇
  1993年   14篇
  1992年   22篇
  1991年   22篇
  1990年   14篇
  1989年   14篇
  1988年   14篇
  1987年   14篇
  1986年   11篇
  1985年   12篇
  1984年   20篇
  1983年   6篇
  1982年   8篇
  1981年   8篇
  1980年   10篇
  1979年   9篇
  1976年   6篇
  1974年   7篇
  1973年   11篇
  1972年   7篇
排序方式: 共有2940条查询结果,搜索用时 15 毫秒
51.
The impact of grazing, resource competition and light on prokaryotic growth and taxonomic composition in subtropical and tropical surface waters were studied through 10 microcosm experiments conducted between 30°N and 30°S in the Atlantic, Pacific and Indian oceans. Under natural sunlight conditions, significant changes in taxonomic composition were only observed after the reduction of grazing by sample filtration in combination with a decrease in resource competition by sample dilution. Sunlight exposure significantly reduced prokaryote growth (11 ± 6%) and community richness (14 ± 4%) compared to continuous darkness but did not significantly change community composition. The largest growth inhibition after sunlight exposure occurred at locations showing deep mixed layers. The reduction of grazing had an expected and significant positive effect on growth, but caused a significant decrease in community richness (16 ± 6%), suggesting that the coexistence of many different OTUs is partly promoted by the presence of predators. Dilution of the grazer-free prokaryotic community significantly enhanced growth at the level of community, but consistently and sharply reduced the abundance of Prochlorococcus and SAR11 populations. The decline of these oligotrophic bacterial taxa following an increase in resource availability is consistent with their high specialization for exploiting the limited resources available in the oligotrophic warm ocean.  相似文献   
52.
53.
Escherichia coli ADP-sugar pyrophosphatase (AspP) is a "Nudix" hydrolase that catalyzes the hydrolytic breakdown of ADP-glucose linked to glycogen biosynthesis. Moderate increases of AspP activity in the cell are accompanied by significant reductions of the glycogen content. In vitro analyses showed that AspP activity is strongly enhanced by macromolecular crowding and by both glucose-1,6-bisphosphate and nucleotide-sugars, providing a first set of indicative evidences that AspP is a highly regulated enzyme. To our knowledge, AspP is the sole bacterial enzyme described to date which is activated by both G1,6P(2) and nucleotide-sugars.  相似文献   
54.
Metallo-beta-lactamases (MbetaLs) are zinc-dependent enzymes able to hydrolyze and inactivate most beta-lactam antibiotics. The large diversity of active site structures and metal content among MbetaLs from different sources has limited the design of a pan-MbetaL inhibitor. Here we report the biochemical and biophysical characterization of a novel MbetaL, GOB-18, from a clinical isolate of a Gram-negative opportunistic pathogen, Elizabethkingia meningoseptica. Different spectroscopic techniques, three-dimensional modeling, and mutagenesis experiments, reveal that the Zn(II) ion is bound to Asp120, His121, His263, and a solvent molecule, i.e. in the canonical Zn2 site of dinuclear MbetaLs. Contrasting all other related MbetaLs, GOB-18 is fully active against a broad range of beta-lactam substrates using a single Zn(II) ion in this site. These data further enlarge the structural diversity of MbetaLs.  相似文献   
55.
56.
57.

Iron deficiency anaemia is a major challenge among consumers in developing countries. Given the deficiency of iron in the diet, there is an urgent need to devise a strategy for providing the required iron in the daily diet to counter the iron deficiency anaemia. We propose that iron biofortification of wheat (Triticum aestivum L.) through seed priming would be an innovative strategy to address this issue. This investigation attempts to find the interaction of iron oxide nanoparticles on germination, growth parameters and accumulation of grain iron in two contrasting wheat genotypes WL711 (low-iron genotype) and IITR26 (high-iron genotype). Wheat seeds were primed with different concentrations of iron oxide nanoparticles in the range of 25–600 ppm, resulting in differential accumulation of grain iron contents. We observed a pronounced increase in germination percentage and shoot length at 400 and 200 ppm treatment concentrations in IITR26 and WL711 genotypes, respectively. Intriguingly, the treatment concentration of 25 ppm demonstrated higher accumulation with a significant increase in grain iron contents to 45.7% in IITR26 and 26.8% in WL711 genotypes, respectively. Seed priming represents an innovative and user-friendly approach for wheat biofortification which triggers iron acquisition and accumulation in grains.

  相似文献   
58.
The effect of addition of indole acetic acid (3 M) andNaCl (75 mM) on growth and enzymes of carbohydrate metabolism inchickpea seedlings was compared. In comparison with control seedlings, theseedlings growing in the presence of indole acetic acid (IAA) had reducedamylase activity in cotyledons and enhanced sucrose synthase (SS) and sucrosephosphate synthase (SPS) activities in cotyledons and shoots at all days ofseedling growth. Compared with control seedlings, sucrose content was higher incotyledons, shoots and roots and reducing sugar content was lower in shoots ofIAA treated seedlings. A low invertase (acid and alkaline) activity in shoots ofIAA treated seedlings could lead to reduced sink strength and hence decreasedgrowth of seedlings. Effects of NaCl stress on growth and activities of amylase,SS and SPS in cotyledons and invertase, SS and SPS in shoots were similar tothose observed with addition of IAA.  相似文献   
59.
The in vitro effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on steroid metabolism in human luteinized granulosa cells (hLGC) have been summarized as a decreased estradiol (E(2)) production without altering either E(2) metabolism or cytochrome P450 aromatase activity. In the present study, hLGC were used to analyze the fate of different substrates for cytochrome P450 17alpha-hydroxylase/17,20-lyase (P450(c17)) in the presence or absence of TCDD. Human LGCs were plated directly on plastic culture dishes in medium supplemented with 2 IU/ml of hCG. TCDD (10 nM) or its solvent was added directly to the cells at the time of medium change, every 48 h for 8 days. The objective of the experiment was to test the hypothesis that exogenous steroid, substrate for P450(c17), would reduce the TCDD effects on E(2) synthesis. With dehydroepiandrosterone (DHEA) (a P450(c17) product), a dose-related increase in E(2) production was observed and the effect of TCDD on lowering E(2) production disappeared. In contrast, with increasing doses, up to 10 micro M, of pregnenolone (P(5)), no change in E(2) production was observed. However, 17alpha-hydroxypregnenolone (17P(5)) at 10 micro M produced a modest but significant increase in the E(2) production. Treatments with P(5) and 17P(5) did not alter the effect of TCDD on E(2) production. Radiolabeled substrate utilization by hLGC suggests that the principal metabolic pathway for Delta5 substrates is the conversion to a Delta4 product probably by a very active 3beta-hydroxysteroid dehydrogenase. We conclude that estrogen production by hLGC is limited at the level of lyase activity. Thus, these data suggest that the most likely target for the TCDD-induced inhibition of estrogen synthesis by hLGC is the 17,20-lyase activity of the P450(c17) enzyme complex.  相似文献   
60.
A single candidate 4'-phosphopantetheine transferase, identified by BLAST searches of the human genome sequence data base, has been cloned, expressed, and characterized. The human enzyme, which is expressed mainly in the cytosolic compartment in a wide range of tissues, is a 329-residue, monomeric protein. The enzyme is capable of transferring the 4'-phosphopantetheine moiety of coenzyme A to a conserved serine residue in both the acyl carrier protein domain of the human cytosolic multifunctional fatty acid synthase and the acyl carrier protein associated independently with human mitochondria. The human 4'-phosphopantetheine transferase is also capable of phosphopantetheinylation of peptidyl carrier and acyl carrier proteins from prokaryotes. The same human protein also has recently been implicated in phosphopantetheinylation of the alpha-aminoadipate semialdehyde dehydrogenase involved in lysine catabolism (Praphanphoj, V., Sacksteder, K. A., Gould, S. J., Thomas, G. H., and Geraghty, M. T. (2001) Mol. Genet. Metab. 72, 336-342). Thus, in contrast to yeast, which utilizes separate 4'-phosphopantetheine transferases to service each of three different carrier protein substrates, humans appear to utilize a single, broad specificity enzyme for all posttranslational 4'-phosphopantetheinylation reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号