全文获取类型
收费全文 | 2312篇 |
免费 | 90篇 |
专业分类
2402篇 |
出版年
2024年 | 6篇 |
2023年 | 7篇 |
2022年 | 38篇 |
2021年 | 61篇 |
2020年 | 36篇 |
2019年 | 40篇 |
2018年 | 46篇 |
2017年 | 58篇 |
2016年 | 77篇 |
2015年 | 83篇 |
2014年 | 131篇 |
2013年 | 167篇 |
2012年 | 207篇 |
2011年 | 193篇 |
2010年 | 108篇 |
2009年 | 96篇 |
2008年 | 132篇 |
2007年 | 125篇 |
2006年 | 140篇 |
2005年 | 91篇 |
2004年 | 92篇 |
2003年 | 92篇 |
2002年 | 88篇 |
2001年 | 16篇 |
2000年 | 19篇 |
1999年 | 12篇 |
1998年 | 28篇 |
1997年 | 13篇 |
1996年 | 7篇 |
1995年 | 15篇 |
1994年 | 8篇 |
1993年 | 9篇 |
1992年 | 14篇 |
1991年 | 16篇 |
1990年 | 10篇 |
1989年 | 7篇 |
1988年 | 12篇 |
1987年 | 11篇 |
1986年 | 7篇 |
1985年 | 10篇 |
1984年 | 16篇 |
1983年 | 6篇 |
1982年 | 11篇 |
1981年 | 6篇 |
1980年 | 9篇 |
1979年 | 7篇 |
1977年 | 3篇 |
1973年 | 4篇 |
1972年 | 3篇 |
1965年 | 2篇 |
排序方式: 共有2402条查询结果,搜索用时 15 毫秒
851.
852.
Tapan Kumar Mondal Amita Bhattacharya Anil Sood Paramvir Singh Ahuja 《Journal of plant physiology》2002,159(12):1317-1321
The cause of poor and abnormal germination of tea somatic embryos was investigated with respect to (a) the different factors that affect reserve mobilisation viz. chilling, desiccation or GA3 and (b) those that affect the maturation process and reserve accumulation viz. ABA.
Tea somatic embryos were sensitive to desiccation and their normal development or germination could not be evoked by external agents like chilling and GA3. Supplementation with external sources of nutrient precursors and readily available forms of carbohydrates like sucrose or maltose together with trans-cinnamic acid improved the germination of the somatic embryos significantly. 相似文献
853.
Arijit Roy Jinqing Li Abu-Bakr Al-Mehdi Anil Mokashi Sukhamay Lahiri 《Journal of applied physiology》2002,93(6):1987-1998
We have reinvestigated the hypothesis of the relative importance of glomus cell plasma and mitochondrial membrane potentials (E(m) and psi(m), respectively) in acute hypoxia by a noninvasive fluorescence microimaging technique using the voltage-sensitive dyes bis-oxonol and JC-1, respectively. Short-term (24 h)-cultured rat glomus cells and cultured PC-12 cells were used for the study. Glomus cell E(m) depolarization was indirectly confirmed by an increase in bis-oxonol (an anionic probe) fluorescence due to a graded increase in extracellular K(+). Fluorescence responses of glomus cell E(m) to acute hypoxia (approximately 10 Torr Po(2)) indicated depolarization in 20%, no response in 45%, and hyperpolarization in 35% of the cells tested, whereas all PC-12 cells consistently depolarized in response to hypoxia. Furthermore, glomus cell E(m) hyperpolarization was confirmed with high CO (approximately 500 Torr). Glomus cell psi(m) depolarization was indirectly assessed by a decrease in JC-1 (a cationic probe) fluorescence. Accordingly, 1 microM carbonyl cyanide p-trifluoromethoxyphenylhydrazone (an uncoupler of oxidative phosphorylation), high CO (a metabolic inhibitor), and acute hypoxia (approximately 10 Torr Po(2)) consistently depolarized the mitochondria in all glomus cells tested. Likewise, all PC-12 cell mitochondria depolarized in response to FCCP and hypoxia. Thus, although bis-oxonol could not show glomus cell depolarization consistently, JC-1 monitored glomus cell mitochondrial depolarization as an inevitable phenomenon in hypoxia. Overall, these responses supported our "metabomembrane hypothesis" of chemoreception. 相似文献
854.
Group I pancreatic phospholipase A2 (PLA2 I) is primarily a digestive enzyme. Recently, however, in addition to its catalytic activity a receptor-mediated function has been described for this enzyme. PLA2 I binding to its receptor induces cellular chemokinesis, proliferation, and smooth muscle contraction. This enzyme also induces the production of prostaglandin E2 in certain cells and may have a proinflammatory role. However, despite its ability to hydrolyze phospholipids in in vitro assays, PLA2-I does not efficiently catalyze release of AA from intact cells. Here, we demonstrate that while short-term exposure of NIH 3T3 cells to PLA2-I is ineffective, exposure of 6 h or longer significantly increases the basal release of AA. Dose-response curve of PLA2-I-induced AA release was saturable with an EC50 of 14.01 ± 1.36 nM (n = 3). [3H]-AA was preferentially released over [3H]-oleic acid by PLA2-I, inactivated with 4-bromophenacyl bromide, was fully capable of mediating AA release. These data suggest that a non-catalytic, receptor-mediated mechanism is involved in PLA2-I-induced AA release in NIH-3T3 cells. This relase of AA is not dependent on protein kinase C or Ca2+ concentration. Comparison of the effect of PLA2-I with those of ATP and platelet-derived growth factor indicates that each of these agonists regulates AA release via independent pathways. Neither the basal enzymatic activity of the 85-kDa cytosolic PLA2 nor the protein level of this enzyme was affected by treatment of cells with PLA2-I. However, the increase in basal enzymatic activity of 85 kDa PLA2 due to protein kinase C activation was further enhanced by pretreatment of cells with PLA2-I. We conclude that: (1) short-term exposure of cells to PLA2 I does not cause measurable AA release; (2) release of AA from intact cells by this enzyme requires long-term exposure; (3) AA release is not mediated by a direct catalytic effect of PLA2 I; and (4) AA release by PLA2 I is accomplished via a receptor-mediated process. Taken together, these results raise the possibility that PLA2 I, in addition to its digestive function, may also contribute to aggravate preexisting inflammatory processes and/or to initiate new ones when chronic exposure of cells to this enzyme occurs. © 1995 Wiley-Liss Inc. 1 This article is a US Government work and, as such, is in the public domain in the United States of America. 相似文献
855.
Susan E. Tsutakawa David S. Shin Clifford D. Mol Tadahide Izumi Andrew S. Arvai Anil K. Mantha Bartosz Szczesny Ivaylo N. Ivanov David J. Hosfield Buddhadev Maiti Mike E. Pique Kenneth A. Frankel Kenichi Hitomi Richard P. Cunningham Sankar Mitra John A. Tainer 《The Journal of biological chemistry》2013,288(12):8445-8455
Non-coding apurinic/apyrimidinic (AP) sites in DNA form spontaneously and as DNA base excision repair intermediates are the most common toxic and mutagenic in vivo DNA lesion. For repair, AP sites must be processed by 5′ AP endonucleases in initial stages of base repair. Human APE1 and bacterial Nfo represent the two conserved 5′ AP endonuclease families in the biosphere; they both recognize AP sites and incise the phosphodiester backbone 5′ to the lesion, yet they lack similar structures and metal ion requirements. Here, we determined and analyzed crystal structures of a 2.4 Å resolution APE1-DNA product complex with Mg2+ and a 0.92 Å Nfo with three metal ions. Structural and biochemical comparisons of these two evolutionarily distinct enzymes characterize key APE1 catalytic residues that are potentially functionally similar to Nfo active site components, as further tested and supported by computational analyses. We observe a magnesium-water cluster in the APE1 active site, with only Glu-96 forming the direct protein coordination to the Mg2+. Despite differences in structure and metal requirements of APE1 and Nfo, comparison of their active site structures surprisingly reveals strong geometric conservation of the catalytic reaction, with APE1 catalytic side chains positioned analogously to Nfo metal positions, suggesting surprising functional equivalence between Nfo metal ions and APE1 residues. The finding that APE1 residues are positioned to substitute for Nfo metal ions is supported by the impact of mutations on activity. Collectively, the results illuminate the activities of residues, metal ions, and active site features for abasic site endonucleases. 相似文献
856.
Shuen-ing Tschen Chun Zeng Loren Field Sangeeta Dhawan Anil Bhushan 《Cell cycle (Georgetown, Tex.)》2017,16(22):2183-2191
Diabetes results from an inadequate mass of functional β cells, due to either β cell loss caused by autoimmune destruction (type I diabetes) or β cell failure in response to insulin resistance (type II diabetes). Elucidating the mechanisms that regulate β cell mass may be key to developing new techniques that foster β cell regeneration as a cellular therapy to treat diabetes. While previous studies concluded that cyclin D2 is required for postnatal β cell self-renewal in mice, it is not clear if cyclin D2 is sufficient to drive β cell self-renewal. Using transgenic mice that overexpress cyclin D2 specifically in β cells, we show that cyclin D2 overexpression increases β cell self-renewal post-weaning and results in increased β cell mass. β cells that overexpress cyclin D2 are responsive to glucose stimulation, suggesting they are functionally mature. β cells that overexpress cyclin D2 demonstrate an enhanced regenerative capacity after injury induced by streptozotocin toxicity. To understand if cyclin D2 overexpression is sufficient to drive β cell self-renewal, we generated a novel mouse model where cyclin D2 is only expressed in β cells of cyclin D2?/? mice. Transgenic overexpression of cyclin D2 in cyclin D2?/? β cells was sufficient to restore β cell mass, maintain normoglycaemia, and improve regenerative capacity when compared with cyclin D2?/? littermates. Taken together, our results indicate that cyclin D2 is sufficient to regulate β cell self-renewal and that manipulation of its expression could be used to enhance β cell regeneration. 相似文献
857.
Nighat Nazir Surrinder Koul Mushtaq Ahmad Qurishi Subhash Chandra Taneja Ghulam Nabi Qazi 《Biocatalysis and Biotransformation》2013,31(2):118-123
The regioselective acylation of irilone, isolated from Iris germanica, with vinylacetate and propenylacetate and deacylation of irilone diacetate with n-butanol were studied using lipases from Aspergillus niger, Mucor miehei, Pseudomonas cepacia, Candida cylindracea, porcine pancreas and Candida antarctica. Significant conversion of irilone to 4′-O-acetylirilone was achieved using P. cepacia lipase, while irilone diacetate was converted to 5-O-acetylirilone by the enzymatic action of lipases from M. miechei, P. cepacia and porcine pancreas under different experimental conditions. This preferential protection/deprotection furnishes an opportunity to modify the structure of irilone by selective derivatization that may help to change its biological activities by modifying its amphiphilic/lipophilic balance. 相似文献
858.
Ebru Ucakturk Orkun Akman Xiaojun Sun Anil Dolgun Fuming Zhang Robert J. Linhardt 《Glycoconjugate journal》2016,33(1):103-112
Glycosaminoglycans (GAGs) are heterogeneous, linear, highly charged, anionic polysaccharides consisting of repeating disaccharides units. GAGs have some biological significance in cancer progression (invasion and metastasis) and cell signaling. In different cancer types, GAGs undergo specific structural changes. In the present study, in depth investigation of changes in sulfation pattern and composition of GAGs, heparan sulfate (HS)/heparin (HP), chondroitin sulfate (CS)/dermatan sulfate and hyaluronan (HA) in normal renal tissue (NRT) and renal cell carcinoma tissue (RCCT) were evaluated. The statistical evaluation showed that alteration of the HS (HSNRT = 415.1 ± 115.3; HSRCCT = 277.5 ± 134.3), and CS (CSNRT = 35.3 ± 12.3; CSRCCT = 166.7 ± 108.8) amounts (in ng/mg dry tissue) were statistically significant (p < 0.05). Sulfation pattern in NRT and RCCT was evaluated to reveal disaccharide profiles. Statistical analyses showed that RCCT samples contain significantly increased amounts (in units of ng/mg dry tissue) of 4SCS (NRT = 25.7 ± 9.4; RCCT = 117.1 ± 73.9), SECS (NRT = 0.7 ± 0.3; RCCT = 4.7 ± 4.5), 6SCS (NRT = 6.1 ± 2.7; RCCT = 39.4 ± 34.7) and significantly decreased amounts (in units of ng/mg dry tissue) of NS6SHS (RCCT = 28.6 ± 6.5, RCCT = 10.2 ± 8.0), NS2SHS (RCCT = 44.2 ± 13.8; RCCT = 27.2 ± 15.0), NSHS (NRT = 68.4 ± 15.8; RCCT = 50.4 ± 21.2), 2S6SHS (NRT = 1.0 ± 0.4; RCCT = 0.4 ± 0.3), and 6SHS (NRT = 60.6 ± 17.5; RCCT = 24.9 ± 12.3). If these changes in GAGs are proven to be specific and sensitive, they may serve as potential biomarkers in RCC. Our findings are likely to help us to show the direction for further investigations to be able to bring different diagnostic and prognostic approaches in renal tumors. 相似文献
859.
Squamous cell carcinoma of head and neck (SCCHN), one of the leading cancers worldwide, is most prevalent in Indian sub-continent. The major risk factors involved are smoking and consumption of alcohol, since they provide high free radical generating environment. We studied 8-oxoguanine DNA-glycosylase (OGG1) Ser326Cys polymorphism in 278 SCCHN cases and 278 matched controls by PCR-RFLP and observed that the variant genotype Ser/Cys exhibited an enhanced risk of ~1.7 folds (OR=1.71, 95% CI=1.20-2.93) and Cys/Cys ~2.5 folds (OR=2.55, 95% CI=1.29-5.00). Furthermore, we found a significant increase in salivary cell 8-OHdG with respect to Ser/Cys and Cys/Cys genotypes of OGG1 in SCCHN cases, when compared to Ser/Ser and Ser/Cys genotypes of the control population. Our results demonstrate that Ser326Cys variant genotype is associated with an increased risk of SCCHN in north India. Ser326Cys variant genotype was found to accumulate more of 8-OHdG, which may serve as a biomarker for early diagnosis of SCCHN. 相似文献
860.
Apurinic/apyrimidinic endonuclease 1 (APE1), a central enzyme in the base excision repair pathway, cleaves damaged DNA in Mg(2+) dependent reaction. Despite characterization of nine X-ray crystallographic structures of human APE1, in some cases, bound to various metal ions and substrate/product, the position of the metal ion and its stoichiometry for the cleavage reaction are still being debated. While a mutation of the active site E96Q was proposed to eliminate Mg(2+) binding at the "A" site, we show experimentally that this mutant still requires Mg(2+) at concentration similar to that for the wild type enzyme to cleave the AP site in DNA. Molecular dynamics simulations of the wild type APE1, E96Q and a double missense mutant E96Q + D210N indicate that Mg(2+) placed at the A-site destabilizes the bound AP site-containing DNA. In these simulations, the H-bond chain D238-H309-AP site oxygen is broken and the substrate DNA is shifted away from its crystal structure position (1DE9). In contrast, simulations with the Mg(2+) at site B or A+B sites leave the substrate DNA at the position shown in the crystal structure (1DE9). Taken together our MD simulations and biochemical analysis suggests that Mg(2+) binding at the B site is involved in the reaction mechanism associated with endonuclease function of APE1. 相似文献