全文获取类型
收费全文 | 206篇 |
免费 | 2篇 |
专业分类
208篇 |
出版年
2022年 | 2篇 |
2021年 | 2篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2018年 | 2篇 |
2017年 | 1篇 |
2016年 | 1篇 |
2015年 | 7篇 |
2014年 | 5篇 |
2013年 | 10篇 |
2012年 | 14篇 |
2011年 | 10篇 |
2010年 | 6篇 |
2009年 | 8篇 |
2008年 | 3篇 |
2007年 | 14篇 |
2006年 | 13篇 |
2005年 | 14篇 |
2004年 | 9篇 |
2003年 | 8篇 |
2002年 | 6篇 |
2001年 | 9篇 |
2000年 | 11篇 |
1999年 | 10篇 |
1998年 | 3篇 |
1997年 | 5篇 |
1996年 | 2篇 |
1995年 | 2篇 |
1993年 | 1篇 |
1992年 | 5篇 |
1991年 | 3篇 |
1990年 | 2篇 |
1989年 | 3篇 |
1987年 | 1篇 |
1986年 | 4篇 |
1985年 | 2篇 |
1984年 | 4篇 |
1980年 | 1篇 |
1978年 | 1篇 |
1976年 | 1篇 |
1974年 | 1篇 |
排序方式: 共有208条查询结果,搜索用时 281 毫秒
91.
Oxidative stress in Ca2+ ‐induced membrane permeability transition in brain mitochondria 总被引:3,自引:0,他引:3
Evelise N. Maciel Anibal E. Vercesi Roger F. Castilho 《Journal of neurochemistry》2001,79(6):1237-1245
Mitochondrial permeability transition (PT) is a non-selective inner membrane permeabilization, typically promoted by the accumulation of excessive quantities of Ca(2+) ions in the mitochondrial matrix. This phenomenon may contribute to neuronal cell death under some circumstances, such as following brain trauma and hypoglycemia. In this report, we show that Ca(2+)-induced brain mitochondrial PT was stimulated by Na(+) (10 mM) and totally prevented by the combination of ADP and cyclosporin A. Removal of Ca(2+) from the mitochondrial suspension by EGTA or inhibition of Ca(2+) uptake by ruthenium red partially reverted the dissipation of the membrane potential associated with PT. Ca(2+)-induced brain mitochondrial PT was significantly inhibited by the antioxidant catalase, indicating the participation of reactive oxygen species in this process. An increased detection of reactive oxygen species, measured through dichlorodihydrofluorescein oxidation, was observed after mitochondrial Ca(2+) uptake. Ca(2+)-induced dichlorodihydrofluorescein oxidation was enhanced by Na(+) and prevented by ADP and cyclosporin A, indicating that PT enhances mitochondrial oxidative stress. This could be at least in part a consequence of the extensive depletion in NAD(P)H that accompanied this Ca(2+)-induced mitochondrial PT. NADPH is known to maintain the antioxidant function of the glutathione reductase/peroxidase and thioredoxin reductase/peroxidase systems. In addition, the occurrence of mitochondrial PT was associated with membrane lipid peroxidation. We conclude that PT further increases Ca(2+)-induced oxidative stress in brain mitochondria leading to secondary damage such as lipid peroxidation. 相似文献
92.
Genilza Pereira de Oliveira Erika Cortez Graça Justo Araujo Katia Costa de Carvalho Sabino Fabiana Alves Neves Amélia Faustino Bernardo Simone Nunes de Carvalho Anibal Sanchez Moura Laís Carvalho Alessandra Alves Thole 《Cell and tissue research》2014,357(1):185-194
Bone marrow cells (BMCs) are the main type of cells used for transplantation therapies. Obesity, a major world health problem, has been demonstrated to affect various tissues, including bone marrow. This could compromise the success of such therapies. One of the main mechanisms underlying the pathogenesis of obesity is mitochondrial dysfunction, and recent data have suggested an important role for mitochondrial metabolism in the regulation of stem cell proliferation and differentiation. Since the potential use of BMCs for clinical therapies depends on their viability and capacity to proliferate and/or differentiate properly, the analysis of mitochondrial function and cell viability could be important approaches for evaluating BMC quality in the context of obesity. We therefore compared BMCs from a control group (CG) and an obese group (OG) of mice and evaluated their mitochondrial function, proliferation capacity, apoptosis, and levels of proteins involved in energy metabolism. BMCs from OG had increased apoptosis and decreased proliferation rates compared with CG. Mitochondrial respiratory capacity, biogenesis, and the coupling between oxidative phosphorylation and ATP synthesis were significantly decreased in OG compared with CG, in correlation with increased levels of uncoupling protein 2 and reduced peroxisome proliferator-activated receptor-coactivator 1α content. OG also had decreased amounts of the glucose transporter GLUT-1 and insulin receptor (IRβ). Thus, Western-diet-induced obesity leads to mitochondrial dysfunction and reduced proliferative capacity in BMCs, changes that, in turn, might compromise the success of therapies utilizing these cells. 相似文献
93.
94.
Fabricio AS Tringali G Pozzoli G Melo MC Vercesi JA Souza GE Navarra P 《American journal of physiology. Regulatory, integrative and comparative physiology》2006,290(6):R1515-R1523
The intracerebroventricular injection of endothelin-1 (ET-1) induces fever and increases PG levels in the cerebrospinal fluid of rats. Likewise, the injection of IL-1 into the preoptic area (POA) of the rat hypothalamus causes both fever and increased PG production. In this study, we conducted in vivo and in vitro experiments in the rat to investigate 1) the hypothalamic region involved in ET-1-induced fever and PG biosynthesis and 2) whether hypothalamic IL-1 plays a role as a mediator of the above ET-1 activities. One hundred femtomoles of ET-1 increased body temperature when injected in the POA of conscious Wistar rats; this effect was significantly counteracted by the coinjection of 600 pmol IL-1 receptor antagonist (IL-1ra). In experiments on rat hypothalamic explants, 100 nM ET-1 caused a significant increase in PGE2 production and release from the whole hypothalamus and from the isolated POA, but not from the retrochiasmatic region, in 1-h incubations. Six nanomoles of IL-1ra or 10 nM of a cell-permeable interleukin-1 converting enzyme inhibitor completely counteracted the effect of ET-1 on PGE2 release from the POA. One hundred nanomoles ET-1 also caused a significant increase in IL-1beta immunoreactivity released into the bath solution of hypothalamic explants after 1 h of incubation, although during such time ET-1 failed to modify the gene expression of IL-1beta and other pyrogenic cytokines within the hypothalamus. In conclusion, our results show that ET-1 increases IL-1 production in the POA, and this effect appears to be correlated to ET-1-induced fever in vivo, as well as to PG production in vitro. 相似文献
95.
Daniella Bonaventura Fabiana S. Oliveira Claure N. Lunardi Juliana A. Vercesi Roberto S. da Silva Lusiane M. Bendhack 《Nitric oxide》2006,15(4):387-394
Nitric oxide (NO) plays an important role in the control of vascular tone. NO donors have therapeutic use and the most used NO donors, nitroglycerin and sodium nitroprusside have problems in their use. Thus, new NO donors have been synthesized to minimize these undesirable effects. Nytrosil ruthenium complexes have been studied as a new class of NO donors. trans-[RuCl([15]aneN(4))NO](2+), induces vasorelaxation only in presence of reducing agent. In this study, we characterized the mechanisms of vasorelaxation of trans-[RuCl([15]aneN(4))NO](2+) in denuded rat aorta and identified which NO forms are involved in this relaxation. We also evaluated the effect of this NO donor in decreasing the cytosolic Ca(2+) concentration ([Ca(2+)]c) of the vascular smooth muscle cells. Vasorelaxation to trans-[RuCl([15]aneN(4))NO](2+) (E(max): 101.8 +/- 2.3%, pEC(50): 5.03 +/- 0.15) was almost abolished in the presence of the NO* scavenger hydroxocobalamin (E(max): 4.0 +/- 0.4%; P < 0.001) and it was partially inhibited by the NO(-) scavenger L-cysteine (E(max): 79.9 +/- 6.9%, pEC(50): 4.41 +/- 0.06; P < 0.05). The guanylyl cyclase inhibitor ODQ reduced the E(max) (57.7 +/- 4.0%, P < 0.001) and pEC(50) (4.21 +/- 0.42, P < 0.01) and the combination of ODQ and TEA abolished the response to trans-[RuCl([15]aneN(4))NO](2+). The blockade of voltage-dependent (K(v)), ATP-sensitive (K(ATP)), and Ca(2+)-activated (K(Ca) K(+) channels reduced the vasorelaxation induced by trans-[RuCl([15]aneN(4))NO](2+). This compound significantly reduced [Ca(2+)]c (from 100% to 85.9 +/- 3.5%, n = 4). In conclusion, our data demonstrate that this NO donor induces vascular relaxation involving NO* and NO(-) species, that is associated to a decrease in [Ca(2+)]c. The mechanisms of vasorelaxation involve guanylyl cyclase activation, cGMP production and K(+) channels activation. 相似文献
96.
María Eugenia Alzugaray Mariana Laura Adami Luis Anibal Diambra Salvador Hernandez-Martinez Cristina Damborenea Fernando Gabriel Noriega Jorge Rafael Ronderos 《PloS one》2013,8(10)
Background
Cell-cell interactions are a basic principle for the organization of tissues and organs allowing them to perform integrated functions and to organize themselves spatially and temporally. Peptidic molecules secreted by neurons and epithelial cells play fundamental roles in cell-cell interactions, acting as local neuromodulators, neurohormones, as well as endocrine and paracrine messengers. Allatotropin (AT) is a neuropeptide originally described as a regulator of Juvenile Hormone synthesis, which plays multiple neural, endocrine and myoactive roles in insects and other organisms.Methods
A combination of immunohistochemistry using AT-antibodies and AT-Qdot nanocrystal conjugates was used to identify immunoreactive nerve cells containing the peptide and epithelial-muscular cells targeted by AT in Hydra plagiodesmica. Physiological assays using AT and AT- antibodies revealed that while AT stimulated the extrusion of the hypostome in a dose-response fashion in starved hydroids, the activity of hypostome in hydroids challenged with food was blocked by treatments with different doses of AT-antibodies.Conclusions
AT antibodies immunolabeled nerve cells in the stalk, pedal disc, tentacles and hypostome. AT-Qdot conjugates recognized epithelial-muscular cell in the same tissues, suggesting the existence of anatomical and functional relationships between these two cell populations. Physiological assays indicated that the AT-like peptide is facilitating food ingestion.Significance
Immunochemical, physiological and bioinformatics evidence advocates that AT is an ancestral neuropeptide involved in myoregulatory activities associated with meal ingestion and digestion. 相似文献97.
The ability of low concentrations (5-15 microM) of long-chain fatty acids to open the permeability transition pore (PTP) in Ca(2+)-loaded mitochondria has been ascribed to their protonophoric effect mediated by mitochondrial anion carriers, as well as to a direct interaction with the pore assembly [M.R. Wieckowski and L. Wojtczak, FEBS Lett. 423 (1998) 339-342]. Here, we have compared the PTP opening ability of arachidonic acid (AA) with that of carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) at concentrations that cause similar quantitative dissipation of the membrane potential (DeltaPsi) in Ca(2+)-loaded rat liver mitochondria respiring on succinate. The initial protonophoric effects of AA and FCCP were only slightly modified by carboxyatractyloside and were followed by PTP opening, as indicated by a second phase of DeltaPsi disruption sensitive to EGTA, ADP, dithiothreitol and cyclosporin A. This second phase of DeltaPsi dissipation could also be prevented by rotenone or NAD(P)H-linked substrates which decrease the pyridine nucleotide (PN) oxidation that follows the stimulation of oxygen consumption induced by AA or FCCP. These results suggest that, under the experimental conditions used here, the PTP opening induced by AA or FCCP was a consequence of PN oxidation. Exogenous catalase also inhibited both AA- and FCCP-induced PTP opening. These results indicate that a condition of oxidative stress associated with the oxidized state of PN underlies membrane protein thiol oxidation and PTP opening. 相似文献
98.
99.
Plant Uncoupling Mitochondrial Protein and Alternative Oxidase: Energy Metabolism and Stress 总被引:4,自引:0,他引:4
Energy-dissipation in plant mitochondria can be mediated by inner membrane proteins via two processes: redox potential-dissipation
or proton electrochemical potential-dissipation. Alternative oxidases (AOx) and the plant uncoupling mitochondrial proteins
(PUMP) perform a type of intrinsic and extrinsic regulation of the coupling between respiration and phosphorylation, respectively.
Expression analyses and functional studies on AOx and PUMP under normal and stress conditions suggest that the physiological
role of both systems lies most likely in tuning up the mitochondrial energy metabolism in response of cells to stress situations.
Indeed, the expression and function of these proteins in non-thermogenic tissues suggest that their primary functions are
not related to heat production. 相似文献
100.
Lopes Da Costa C Sampaio De Freitas M Sanchez Moura A 《The Journal of nutritional biochemistry》2004,15(4):236-241
In previous studies, we verified increased insulin sensitivity in adult male offspring of lactating rats readjusting to lack of insulin secretion reduction brought about by protein restriction during lactation. The present study aims to evaluate the effects of maternal protein undernutrition during lactation on glucose-induced insulin secretion and GLUT-2 expression in beta-cells of neonate male and female rats. Lactating Wistar rats were given a protein-free diet during the first 10 days and a normal diet (22% of protein) until weaning. The neonates were separated at birth by sex and diet and studied at 4, 8 and 21 days of lactation. Glucose-induced insulin secretion by pancreatic islets was analyzed by radioimmunoassay and GLUT-2 expression in beta-cells by Western blot. Glucose-induced insulin secretion of the undernourished groups was higher than in the control groups except among females. When comparing the male and female groups and the control and undernourished groups, female neonates showed significantly greater insulin secretion than the male group. Also it was noted that undernutrition induced greater GLUT-2 expression. For instance, comparing the undernourished male and female neonates there was an increase in female GLUT-2 expression on day 4. On the other hand, in undernourished male neonates a GLUT-2 expression increased later in lactation. In conclusion, during a short term, maternal undernutrition induces an increase of the glucose-induced insulin secretion only in male neonates and is associated with an increase in GLUT-2 expression in the beta-cell. 相似文献