首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   14篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   6篇
  2014年   6篇
  2013年   6篇
  2012年   13篇
  2011年   14篇
  2010年   14篇
  2009年   7篇
  2008年   10篇
  2007年   7篇
  2006年   6篇
  2005年   6篇
  2004年   8篇
  2003年   7篇
  2002年   2篇
  2000年   1篇
  1998年   1篇
  1992年   1篇
  1984年   2篇
  1982年   2篇
排序方式: 共有134条查询结果,搜索用时 15 毫秒
81.
Rukść A  Birmingham EC  Baker MD 《DNA Repair》2007,6(12):1876-1889
Rad51, a homolog of Esherichia coli RecA, is a DNA-dependent ATPase that binds cooperatively to single-stranded DNA forming a nucleoprotein filament, which functions in the strand invasion step of homologous recombination. In this study, we examined DNA repair and recombination responses in mouse hybridoma cells stably expressing wildtype Rad51, or Walker box lysine variants, Rad51-K133A or Rad51-K133R, deficient in ATP binding and ATP hydrolysis, respectively. A unique feature is the recovery of stable transformants expressing Rad51-K133A. Augmentation of the endogenous pool of Rad51 by over-expression of transgene-encoded wildtype Rad51 enhances cell growth and gene targeting, but has minimal effects on cell survival to DNA damage induced by ionizing radiation (IR) or mitomycin C (MMC). Whereas expression of Rad51-K133A impedes growth, in general, neither Rad51-K133A nor Rad51-K133R significantly affected survival to IR- or MMC-induced damage, but did significantly reduce gene targeting. Expression of wildtype Rad51, Rad51-K133A or Rad51-K133R did not affect the frequency of intrachromosomal homologous recombination. However, in both gene targeting and intrachromosomal homologous recombination, wildtype and mutant Rad51 transgene expression altered the recombination mechanism: in gene targeting, wildtype Rad51 expression stimulates crossing over, while expression of Rad51-K133A or Rad51-K133R perturbs gene conversion; in intrachromosomal homologous recombination, cell lines expressing wildtype Rad51, Rad51-K133A or Rad51-K133R display increased deletion formation by intrachromosomal homologous recombination. The results suggest that ATP hydrolysis by Rad51 is more important for some homologous recombination functions than it is for other aspects of DNA repair.  相似文献   
82.
The emerging obesity epidemic and accompanying health consequences led The Obesity Society (TOS) in 2008 to publish a position paper defining obesity as a disease. Since then, new information has emerged on the underlying mechanisms leading to excess adiposity and the associated structural, cardiometabolic, and functional disturbances. This report presents the updated TOS 2018 position statement on obesity as a noncommunicable chronic disease.  相似文献   
83.
Mycoplasma hyopneumoniae, the aetiological agent of porcine enzootic pneumonia, regulates the presentation of proteins on its cell surface via endoproteolysis, including those of the cilial adhesin P123 (MHJ_0194). These proteolytic cleavage events create functional adhesins that bind to proteoglycans and glycoproteins on the surface of ciliated and non‐ciliated epithelial cells and to the circulatory host molecule plasminogen. Two dominant cleavage events of the P123 preprotein have been previously characterized; however, immunoblotting studies suggest that more complex processing events occur. These extensive processing events are characterized here. The functional significance of the P97 cleavage fragments is also poorly understood. Affinity chromatography using heparin, fibronectin and plasminogen as bait and peptide arrays were used to expand our knowledge of the adhesive capabilities of P123 cleavage fragments and characterize a novel binding motif in the C‐terminus of P123. Further, we use immunohistochemistry to examine in vivo, the biological significance of interactions between M. hyopneumoniae and fibronectin and show that M. hyopneumoniae induces fibronectin deposition at the site of infection on the ciliated epithelium. Our data supports the hypothesis that M. hyopneumoniae possesses the molecular machinery to influence key molecular communication pathways in host cells.  相似文献   
84.
Host density is an important factor when it comes to parasite transmission and host resistance. Increased host density can increase contact rate between individuals and thus parasite transmission. Host density can also cause physiological changes in the host, which can affect host resistance. Yet, the direction in which host density affects host resistance remains unresolved. It is also unclear whether food limitation plays a role in this effect. We investigated the effect of larval density in monarch butterflies, Danaus plexippus, on the resistance to their natural protozoan parasite Ophryocystis elektroscirrha under both unlimited and limited food conditions. We exposed monarchs to various density treatments as larvae to mimic high densities observed in sedentary populations. Data on infection and parasite spore load were collected as well as development time, survival, wing size, and melanization. Disease susceptibility under either food condition or across density treatments was similar. However, we found high larval density impacted development time, adult survival, and wing morphology when food was limited. This study aids our understanding of the dynamics of environmental parasite transmission in monarch populations, which can help explain the increased prevalence of parasites in sedentary monarch populations compared to migratory populations.  相似文献   
85.
We have investigated the potential of the GTP synthesis pathways as chemotherapeutic targets in the human pathogen Cryptococcus neoformans, a common cause of fatal fungal meningoencephalitis. We find that de novo GTP biosynthesis, but not the alternate salvage pathway, is critical to cryptococcal dissemination and survival in vivo. Loss of inosine monophosphate dehydrogenase (IMPDH) in the de novo pathway results in slow growth and virulence factor defects, while loss of the cognate phosphoribosyltransferase in the salvage pathway yielded no phenotypes. Further, the Cryptococcus species complex displays variable sensitivity to the IMPDH inhibitor mycophenolic acid, and we uncover a rare drug-resistant subtype of C. gattii that suggests an adaptive response to microbial IMPDH inhibitors in its environmental niche. We report the structural and functional characterization of IMPDH from Cryptococcus, revealing insights into the basis for drug resistance and suggesting strategies for the development of fungal-specific inhibitors. The crystal structure reveals the position of the IMPDH moveable flap and catalytic arginine in the open conformation for the first time, plus unique, exploitable differences in the highly conserved active site. Treatment with mycophenolic acid led to significantly increased survival times in a nematode model, validating de novo GTP biosynthesis as an antifungal target in Cryptococcus.  相似文献   
86.
87.
Long embryonic periods are assumed to reflect slower intrinsic development that are thought to trade off to allow enhanced physiological systems, such as immune function. Yet, the relatively rare studies of this trade-off in avian offspring have not found the expected trade-off. Theory and tests have not taken into account the strong extrinsic effects of temperature on embryonic periods of birds. Here, we show that length of the embryonic period did not explain variation in two measures of immune function when temperature was ignored, based on studies of 34 Passerine species in tropical Venezuela (23 species) and north temperate Arizona (11 species). Variation in immune function was explained when embryonic periods were corrected for average embryonic temperature, in order to better estimate intrinsic rates of development. Immune function of offspring trades off with intrinsic rates of embryonic development once the extrinsic effects of embryonic temperatures are taken into account.  相似文献   
88.
The classic female estrogen, 17β-estradiol (E2), has been repeatedly shown to affect the perceptual processing of visual cues. Although gonadal E2 has often been thought to influence these processes, the possibility that central visual processing may be modulated by brain-generated hormone has not been explored. Here we show that estrogen-associated circuits are highly prevalent in the mouse primary visual cortex (V1). Specifically, we cloned aromatase, a marker for estrogen-producing neurons, and the classic estrogen receptors (ERs) ERα and ERβ, as markers for estrogen-responsive neurons, and conducted a detailed expression analysis via in-situ hybridization. We found that both monocular and binocular V1 are highly enriched in aromatase- and ER-positive neurons, indicating that V1 is a site of production and sensitivity to estrogens. Using double-fluorescence in-situ hybridization, we reveal the neurochemical identity of estrogen-producing and -sensitive cells in V1, and demonstrate that they constitute a heterogeneous neuronal population. We further show that visual experience engages a large population of aromatase-positive neurons and, to a lesser extent, ER-expressing neurons, suggesting that E2 levels may be locally regulated by visual input in V1. Interestingly, acute episodes of visual experience do not affect the density or distribution of estrogen-associated circuits. Finally, we show that adult mice dark-reared from birth also exhibit normal distribution of aromatase and ERs throughout V1, suggesting that the implementation and maintenance of estrogen-associated circuits is independent of visual experience. Our findings demonstrate that the adult V1 is a site of production and sensitivity to estrogens, and suggest that locally-produced E2 may shape visual cortical processing.  相似文献   
89.
Varicella zoster virus (VZV) ORF25 is a 156 amino acid protein belonging to the approximately 40 core proteins that are conserved throughout the Herpesviridae. By analogy to its functional orthologue UL33 in Herpes simplex virus 1 (HSV-1), ORF25 is thought to be a component of the terminase complex. To investigate how cleavage and encapsidation of viral DNA links to the nuclear egress of mature capsids in VZV, we tested 10 VZV proteins that are predicted to be involved in either of the two processes for protein interactions against each other using three independent protein-protein interaction (PPI) detection systems: the yeast-two-hybrid (Y2H) system, a luminescence based MBP pull-down interaction screening assay (LuMPIS), and a bioluminescence resonance energy transfer (BRET) assay. A set of 20 interactions was consistently detected by at least 2 methods and resulted in a dense interaction network between proteins associated in encapsidation and nuclear egress. The results indicate that the terminase complex in VZV consists of ORF25, ORF30, and ORF45/42 and support a model in which both processes are closely linked to each other. Consistent with its role as a central hub for protein interactions, ORF25 is shown to be essential for VZV replication.  相似文献   
90.
Epilepsy is a devastating disease, currently treated with medications, surgery or electrical stimulation. None of these approaches is totally effective and our ability to control seizures remains limited and complicated by frequent side effects. The emerging revolutionary technique of optogenetics enables manipulation of the activity of specific neuronal populations in vivo with exquisite spatiotemporal resolution using light. We used optogenetic approaches to test the role of hippocampal excitatory neurons in the lithium-pilocarpine model of acute elicited seizures in awake behaving rats. Hippocampal pyramidal neurons were transduced in vivo with a virus carrying an enhanced halorhodopsin (eNpHR), a yellow light activated chloride pump, and acute seizure progression was then monitored behaviorally and electrophysiologically in the presence and absence of illumination delivered via an optical fiber. Inhibition of those neurons with illumination prior to seizure onset significantly delayed electrographic and behavioral initiation of status epilepticus, and altered the dynamics of ictal activity development. These results reveal an essential role of hippocampal excitatory neurons in this model of ictogenesis and illustrate the power of optogenetic approaches for elucidation of seizure mechanisms. This early success in controlling seizures also suggests future therapeutic avenues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号