首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6040篇
  免费   585篇
  国内免费   657篇
  2024年   23篇
  2023年   93篇
  2022年   235篇
  2021年   337篇
  2020年   239篇
  2019年   291篇
  2018年   290篇
  2017年   226篇
  2016年   275篇
  2015年   411篇
  2014年   460篇
  2013年   456篇
  2012年   592篇
  2011年   511篇
  2010年   308篇
  2009年   313篇
  2008年   304篇
  2007年   277篇
  2006年   210篇
  2005年   220篇
  2004年   211篇
  2003年   178篇
  2002年   152篇
  2001年   115篇
  2000年   96篇
  1999年   77篇
  1998年   61篇
  1997年   51篇
  1996年   38篇
  1995年   33篇
  1994年   35篇
  1993年   26篇
  1992年   36篇
  1991年   32篇
  1990年   14篇
  1989年   13篇
  1988年   6篇
  1987年   8篇
  1986年   11篇
  1985年   7篇
  1984年   2篇
  1983年   3篇
  1982年   5篇
  1981年   1篇
排序方式: 共有7282条查询结果,搜索用时 15 毫秒
141.
The microtubule cytoskeleton network orchestrates cellular dynamics and chromosome stability in mitosis. Although tubulin acetylation is essential for cellular plasticity, it has remained elusive how kinetochore microtubule plus-end dynamics are regulated by p300/CBP-associated factor (PCAF) acetylation in mitosis. Here, we demonstrate that the plus-end tracking protein, TIP150, regulates dynamic kinetochore-microtubule attachments by promoting the stability of spindle microtubule plus-ends. Suppression of TIP150 by siRNA results in metaphase alignment delays and perturbations in chromosome biorientation. TIP150 is a tetramer that binds an end-binding protein (EB1) dimer through the C-terminal domains, and overexpression of the C-terminal TIP150 or disruption of the TIP150-EB1 interface by a membrane-permeable peptide perturbs chromosome segregation. Acetylation of EB1-PCAF regulates the TIP150 interaction, and persistent acetylation perturbs EB1-TIP150 interaction and accurate metaphase alignment, resulting in spindle checkpoint activation. Suppression of the mitotic checkpoint serine/threonine protein kinase, BubR1, overrides mitotic arrest induced by impaired EB1-TIP150 interaction, but cells exhibit whole chromosome aneuploidy. Thus, the results identify a mechanism by which the TIP150-EB1 interaction governs kinetochore microtubule plus-end plasticity and establish that the temporal control of the TIP150-EB1 interaction by PCAF acetylation ensures chromosome stability in mitosis.  相似文献   
142.
Thrombosis in coronary or cerebral arteries is the major cause of morbidity and mortality worldwide. Diosgenin and total steroidal saponins extracted from the rhizome of Dioscorea zingiberensis C.H. Wright are demonstrated to have anti-thrombotic activity. However, few studies describe the anti-thrombotic activity of the diosgenyl saponin monomer. In the present study, a simple and convenient method for the preparation of a new disaccharide saponin, diosgenyl β-d-galactopyranosyl-(1  4)-β-d-glucopyranoside (3), is described. We evaluated the anti-thrombotic effects of diosgenin and four diosgenyl saponins by measuring the bleeding time; the results showed that compound 3 exhibits outstanding efficiency in prolonging the bleeding time. Furthermore, we assessed whether compound 3 could alter platelet aggregation in vitro and in vivo. In addition, activated partial thromboplastin time (APTT), thrombin time (TT), prothrombin time (PT), coagulation factors and protection rate in mice were measured to evaluate the anti-thrombotic effect of compound 3. The results show that compound 3 inhibited platelet aggregation, prolonged APTT, inhibited factor VIII activities in rats, and increased the protection rate in mice in a dose-dependent manner. Taken together, these findings suggested that diosgenyl saponins, especially compound 3, had anti-thrombotic activity. It may execute anti-thrombotic activity through inhibiting factor VIII activities and platelet aggregation.  相似文献   
143.
Neijiang 977671 and 19 near-isogenic lines with known leaf rust resistance genes were inoculated with 12 pathotypes of Puccinia triticina for postulation of leaf rust resistance genes effective at the seedling stage. The reaction pattern of Neijiang 977671 differed from those of the lines with known leaf rust resistance genes used in the test, indicating that Neijiang 977671 may carry a new leaf rust resistance gene(s). With the objective of identifying and mapping the new gene for resistance to leaf rust, F1 and F2 plants, and F2:3 families, from Neijiang 977671 × Zhengzhou 5389 (susceptible) were inoculated with Chinese P. triticina pathotype FHNQ in the greenhouse. Results from the F2 and F2:3 populations indicated that a single dominant gene, temporarily designated LrNJ97, conferred resistance. In order to identify other possible genes in Neijiang 977671 other eight P. triticina pathotypes avirulent on Neijiang 977671 were used to inoculate 25 F2:3 families. The results showed that at least three leaf rust resistance genes were deduced in Neijiang 977671. Bulked segregant analysis was performed on equal amounts of genomic DNA from 20 resistant and 20 susceptible F2 plants. SSR markers polymorphic between the resistant and susceptible bulks were used to analyze the F2:3 families. LrNJ97 was linked to five SSR loci on chromosome 2BL. The two closest flanking SSR loci were Xwmc317 and Xbarc159 at genetic distances of 4.2 and 2.2 cM, respectively. At present two designated genes (Lr50 and Lr58) are located on chromosome 2BL. In the seedling tests, the reaction pattern of LrNJ97 was different from that of Lr50. Lr50 and Lr58 were derived from T. armeniacum and Ae. triuncialis, respectively, whereas according to the pedigree of Neijiang 977671 LrNJ97 is from common wheat. Although seeds of lines with Lr58 were not available, it was concluded that LrNJ97 is likely to be a new leaf rust resistance gene.  相似文献   
144.
In vitro organogenesis is well-controlled and thus provides an ideal system to study mechanisms of plant organ development. Although it has been well investigated for a long time that exogenous hormones play important roles in determining the types of organs regenerated in vitro, there is currently limited information available for other key factors that mediate de novo organ regeneration. Here, we reported simple and efficient one-step processes for evaluating capacities of inflorescence stem-derived in vitro organogenesis between two different ecotypes in Arabidopsis. Different types of organs, including shoots and roots were initiated from inflorescence stem explants cultured on the media containing 216 combinations of exogenous auxin and cytokinin. Further, we showed that Wassilewskija ecotype had the much higher shoot regeneration capacity than Columbia with different combinations of hormones, indicating that the ecotype is an essential factor determining de novo organogenesis. Our results also suggested that the defined expression patterns of genes involved in auxin and cytokinin biosynthesis were correlated with the variations in organogenesis capacities between the two ecotypes. Thus, in vitro organogenesis is likely regulated by ecotypes through mediating endogenous hormonal biosynthesis.  相似文献   
145.
The relationships between aggregate cell types, cell growth, and the triptolide, wilforgine, and wilforine content in aggregate cell suspension cultures of Tripterygium wilfordii Hook. f. were examined. Aggregate cells larger than 2?mm grew quickly and constituted the majority of the white aggregates. The accumulation of triptolide was strongly correlated with the size of the aggregates and the length of the culture period. The aggregates 0.5?C2?mm in diameter accumulated higher triptolide content than those with other sizes throughout the culture. However, the size of the aggregate cells did not significantly affect on the wilforgine and wilforine content. Two other kinds of aggregate cells, the brown and green aggregate cells, also formed in the suspension cultures. The smallest aggregates (0.1?C0.5?mm) had a lower biomass and growth rate and had more chloroplasts and higher alkaloid content. The results of this study can be used to improve the selection process for the mass production of triptolide, wilforgine, and wilforine from cell suspension cultures.  相似文献   
146.
Leuconostoc carnosum 4010 is a protective culture for meat products. It kills the foodborne pathogen Listeria monocytogenes by producing two class IIa (pediocin-like) bacteriocins, leucocin A and leucocin C. The genes for leucocin A production have previously been characterised from Leuconostoc gelidum UAL 187, whereas no genetic studies about leucocin C has been published. Here, we characterised the genes for the production of leucocins A and C in L. carnosum 4010. In this strain, leucocin A and leucocin C operons were localised in different plasmids. Unlike in L. gelidum, leucocin A operon in L. carnosum 4010 only contained the structural and the immunity genes lcaAB without transporter genes lcaECD. On the contrary, leucocin C cluster included two intact operons. Novel genes lecCI encode the leucocin C precursor and the 97-aa immunity protein LecI, respectively. LecI shares 48 % homology with the immunity proteins of sakacin P and listeriocin. Another leucocin C operon lecXTS, encoding an ABC transporter and an accessory protein, was 97 % identical with the leucocin A transporter operon lcaECD of L. gelidum. For heterologous expression of leucocin C in Lactococcus lactis, the mature part of the lecC gene was fused with the signal sequence of usp45 in the secretion vector pLEB690. L. lactis secreted leucocin C efficiently, as shown by large halos on lawns of L. monocytogenes and Leuconostoc mesenteroides indicators. The function of LecI was then demonstrated by expressing the gene lecI in L. monocytogenes. LecI-producing Listeria was less sensitive to leucocin C than the vector strain, thus corroborating the immunity function of LecI.  相似文献   
147.
Enantiopure sulfoxides can be prepared via the asymmetric oxidation of sulfides using sulfide monooxygenases. The n-octane–water biphasic system was chosen for the bio-oxidation of a water-insoluble phenyl methyl sulfide (PMS) by Rhodococcus sp. CCZU10-1. In this n-octane–water system, the optimum reaction conditions were obtained. (S)-phenyl methyl sulfoxide ((S)-PMSO) with >99.9 % enantiomeric excess formed at 55.3 mM in the n-octane–water biphasic system. Using fed-batch method, a total of 118 mM (S)-PMSO accumulated in 1-L reaction mixture after the 7th feed, and no (R)-PMSO and sulfone were detected. Moreover, Rhodococcus sp. CCZU10-1 displayed fairly good activity and enantioselectivity toward other sulfides. In conclusion, Rhodococcus sp. CCZU10-1 is a promising biocatalyst for synthesizing highly optically active sulfoxides.  相似文献   
148.
Although the pathogenesis of sporadic Alzheimer’s disease (AD) is not clearly understood, neuroinflammation has been known to play a role in the pathogenesis of AD. To investigate a functional link between the neuroinflammation and AD, the effect of leukotriene D4 (LTD4), an inflammatory lipid mediator, was studied on amyloid-β generation in vitro. Application of LTD4 to cell monolayers at concentrations up to 40 nM LTD4 caused increases in the Aβ releases. Concentrations ?40 nM LTD4 decreased neuronal viability. Application of 20 nM LTD4 caused a significant increase in Aβ generation, as assessed by ELISA or Western blotting, without significant cytotoxicity. At this concentration, exposure of neurons to LTD4 for 24 h produced maximal effect in the Aβ generation, and significant increases in the expressions of cysteinyl leukotriene 1 receptor (CysLT1R) and activity of β- or γ-secretase with complete abrogation by the selective CysLT1R antagonist pranlukast. Exposure of neurons to LTD4 for 1 h showed activation of NF-κB pathway, by assessing the levels of p65 or phospho-p65 in the nucleus, and either CysLT1R antagonist pranlukast or NF-κB inhibitor PDTC prevented the nuclear translocation of p65 and the consequent phosphorylation. PDTC also inhibited LTD4-induced elevations of β- or γ-secretase activity and Aβ generation in vitro. Overall, our data show for the first time that LTD4 causes Aβ production by enhancement of β- or γ-secretase resulting from activation of CysLT1R-mediated NF-κB signaling pathway. These findings provide a novel pathologic link between neuroinflammation and AD.  相似文献   
149.
Although parasitoids ultimately kill their host, koinobiont parasitoids must protect not only themselves but also their hosts against extreme environments. In this study, the parasitism rate of Chilo suppressalis Walker (Lepidoptera: Pyralidae) was investigated, and the average body weights, supercooling points, and concentrations of glycerol (acting as a cryoprotectant) in the hemolymph were compared between parasitized and non‐parasitized larvae. Five species of koinobiont endoparasitoids parasitized the overwintering C. suppressalis larvae and the total parasitism rate was 47.6% (n = 1 537). Average body weight of parasitized larvae was significantly lower than that of non‐parasitized larvae, and the parasitism rate of the lighter group (20–30 mg) was highest. The supercooling point of parasitized C. suppressalis larvae (?15.7 ± 0.3 °C) was significantly lower than that of the non‐parasitized larvae (?14.3 ± 0.2 °C). In addition, supercooling points were not correlated with body weights between parasitized and non‐parasitized larvae, indicating that cold hardiness of parasitized larvae was enhanced by endoparasitoids. Furthermore, the concentration of glycerol in the hemolymph was significantly higher in parasitized larvae (205.0 ± 7.1 μmol ml?1) than in non‐parasitized larvae (169.8 ± 14.4 μmol ml?1), which suggests that the mechanism that decreases the supercooling point of parasitized larvae was associated with glycerol. All these results indicated that the cold hardiness of parasitized C. suppressalis larvae was enhanced by their endoparasitoids, which benefitted overwintering endoparasitoids.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号