首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1144篇
  免费   94篇
  国内免费   29篇
  1267篇
  2024年   4篇
  2023年   23篇
  2022年   31篇
  2021年   50篇
  2020年   33篇
  2019年   36篇
  2018年   52篇
  2017年   31篇
  2016年   48篇
  2015年   89篇
  2014年   61篇
  2013年   92篇
  2012年   106篇
  2011年   95篇
  2010年   55篇
  2009年   36篇
  2008年   47篇
  2007年   39篇
  2006年   35篇
  2005年   40篇
  2004年   38篇
  2003年   34篇
  2002年   30篇
  2001年   25篇
  2000年   12篇
  1999年   11篇
  1998年   6篇
  1997年   5篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   8篇
  1992年   6篇
  1991年   4篇
  1990年   5篇
  1989年   6篇
  1988年   3篇
  1987年   5篇
  1985年   6篇
  1984年   7篇
  1983年   5篇
  1982年   3篇
  1979年   4篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1971年   3篇
  1970年   5篇
  1969年   2篇
  1968年   2篇
排序方式: 共有1267条查询结果,搜索用时 15 毫秒
931.
Membrane‐less organelles and RNP granules are enriched in RNA and RNA‐binding proteins containing disordered regions. Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), a key regulating protein in RNA metabolism, localizes to cytoplasmic RNP granules including stress granules. Dysfunctional nuclear‐cytoplasmic transport and dynamic phase separation of hnRNPA1 leads to abnormal amyloid aggregation and neurodegeneration. The intrinsically disordered C‐terminal domain (CTD) of hnRNPA1 mediates both dynamic liquid–liquid phase separation (LLPS) and aggregation. While cellular phase separation drives the formation of membrane‐less organelles, aggregation within phase‐separated compartments has been linked to neurodegenerative diseases. To understand some of the underlying mechanisms behind protein phase separation and LLPS‐mediated aggregation, we studied LLPS of hnRNPA1 CTD in conditions that probe protein electrostatics, modulated specifically by varying pH conditions, and protein, salt and RNA concentrations. In the conditions investigated, we observed LLPS to be favored in acidic conditions, and by high protein, salt and RNA concentrations. We also observed that conditions that favor LLPS also enhance protein aggregation and fibrillation, which suggests an aggregation pathway that is LLPS‐mediated. The results reported here also suggest that LLPS can play a direct role in facilitating protein aggregation, and that changes in cellular environment that affect protein electrostatics can contribute to the pathological aggregation exhibited in neurodegeneration.  相似文献   
932.
Growing evidence suggests that maternal exposures to endocrine disrupting chemicals during pregnancy may lead to poor pregnancy outcomes and increased fetal susceptibility to adult diseases. Polybrominated diphenyl ethers (PBDEs), which are ubiquitously used flame-retardants, could leach into the environment; and become persistent organic pollutants via bioaccumulation. In the United States, blood PBDE levels in adults range from 30–100 ng/g- lipid but the alarming health concern revolves around children who have reported blood PBDE levels 3 to 9-fold higher than adults. PBDEs disrupt endocrine, immune, reproductive and nervous systems. However, the mechanism underlying its adverse health effect is not fully understood. Epigenetics is a possible biological mechanism underlying maternal exposure-child health outcomes by regulating gene expression without changes in the DNA sequence. We sought to examine the relationship between maternal exposure to environmental PBDEs and promoter methylation of a proinflammatory gene, tumor necrosis factor alpha (TNFα). We measured the maternal blood PBDE levels and cord blood TNFα promoter methylation levels on 46 paired samples of maternal and cord blood from the Boston Birth Cohort (BBC). We showed that decreased cord blood TNFα methylation associated with high maternal PBDE47 exposure. CpG site-specific methylation showed significantly hypomethylation in the girl whose mother has a high blood PBDE47 level. Consistently, decreased TNFα methylation associated with an increase in TNFα protein level in cord blood. In conclusion, our finding provided evidence that in utero exposure to PBDEs may epigenetically reprogram the offspring’s immunological response through promoter methylation of a proinflammatory gene.  相似文献   
933.
934.

Background

Killed oral cholera vaccines (OCVs) are available but not used routinely for cholera control except in Vietnam, which produces its own vaccine. In 2007–2008, unprecedented cholera outbreaks occurred in the capital, Hanoi, prompting immunization in two districts. In an outbreak investigation, we assessed the effectiveness of killed OCV use after a cholera outbreak began.

Methodology/Principal Findings

From 16 to 28 January 2008, vaccination campaigns with the Vietnamese killed OCV were held in two districts of Hanoi. No cholera cases were detected from 5 February to 4 March 2008, after which cases were again identified. Beginning 8 April 2008, residents of four districts of Hanoi admitted to one of five hospitals for acute diarrhea with onset after 5 March 2008 were recruited for a matched, hospital-based, case-control outbreak investigation. Cases were matched by hospital, admission date, district, gender, and age to controls admitted for non-diarrheal conditions. Subjects from the two vaccinated districts were evaluated to determine vaccine effectiveness. 54 case-control pairs from the vaccinated districts were included in the analysis. There were 8 (15%) and 16 (30%) vaccine recipients among cases and controls, respectively. The vaccine was 76% protective against cholera in this setting (95% CI 5% to 94%, P = 0.042) after adjusting for intake of dog meat or raw vegetables and not drinking boiled or bottled water most of the time.

Conclusions/Significance

This is the first study to explore the effectiveness of the reactive use of killed OCVs during a cholera outbreak. Our findings suggest that killed OCVs may have a role in controlling cholera outbreaks.  相似文献   
935.
Lipase-catalyzed caffeic acid phenethyl ester (CAPE) synthesis in ionic liquid, 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([Emim][Tf2N]), was investigated in this study. The effects of several reaction conditions, including reaction time, reaction temperature, substrate molar ratio of phenethyl alcohol to caffeic acid (CA), and weight ratio of enzyme to CA, on CAPE yield were examined. In a single parameter study, the highest CAPE yield in [Emim][Tf2N] was obtained at 70 °C with a substrate molar ratio of 30:1 and weight ratio of enzyme to CA of 15:1. Based on these results, response surface methodology (RSM) with a 3-level-4-factor central composite rotatable design (CCRD) was adopted to evaluate enzymatic synthesis of CAPE in [Emim][Tf2N]. The four major factors were reaction time (36–60 h), reaction temperature (65–75 °C), substrate molar ratio of phenethyl alcohol to CA (20:1–40:1), and weight ratio of enzyme to CA (10:1–20:1). A quadratic equation model was used to analyze the experimental data at a 95 % confidence level (p < 0.05). A maximum conversion yield of 99.8 % was obtained under the optimized reaction conditions [60 h, 73.7 °C, substrate molar ratio of phenethyl alcohol to CA (27.1:1), and weight ratio of enzyme to CA (17.8:1)] established by our statistical method, whereas the experimental conversion yield was 96.6 ± 2 %.  相似文献   
936.
2010年10月至2012年11月作者在云南省香格里拉县和曲靖市会泽县等地进行鸟类调查和鸟类摄影时,先后观察记录到高原山鹑(Perdix hodgsoniae)和白鹤(Grus leucogeranus)两种鸟,经查阅相关文献和专著,确认高原山鹑和白鹤为云南省鸟类新纪录。  相似文献   
937.
Dioxin concentrations remain elevated in the environment and in humans residing near former US Air Force bases in South Vietnam. Our previous epidemiological studies showed adverse effects of dioxin exposure on neurodevelopment for the first 3 years of life. Subsequently, we extended the follow-up period and investigated the influence of perinatal dioxin exposure on neurodevelopment, including motor coordination and higher cognitive ability, in preschool children. Presently, we investigated 176 children in a hot spot of dioxin contamination who were followed up from birth until 5 years old. Perinatal dioxin exposure levels were estimated by measuring dioxin levels in maternal breast milk. Dioxin toxicity was evaluated using two indices; toxic equivalent (TEQ)-polychlorinated dibenzo-p-dioxins/furans (PCDDs/Fs) and concentration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Coordinated movements, including manual dexterity, aiming and catching, and balance, were assessed using the Movement Assessment Battery for Children, Second Edition (Movement ABC-2). Cognitive ability was assessed using the nonverbal index (NVI) of the Kaufman Assessment Battery for Children, Second Edition (KABC-II). In boys, total test and balance scores of Movement ABC-2 were significantly lower in the high TEQ- PCDDs/Fs group compared with the moderate and low exposure groups. NVI scores and the pattern reasoning subscale of the KABC-II indicating planning ability were also significantly lower in the high TCDD exposure group compared with the low exposure group of boys. However, in girls, no significant differences in Movement ABC-2 and KABC-II scores were found among the different TEQ-PCDDs/Fs and TCDD exposure groups. Furthermore, in high risk cases, five boys and one girl highly exposed to TEQ-PCDDs/Fs and TCDD had double the risk for difficulties in both neurodevelopmental skills. These results suggest differential impacts of TEQ-PCDDs/Fs and TCDD exposure on motor coordination and higher cognitive ability, respectively. Moreover, high TEQ-PCDDs/Fs exposure combined with high TCDD exposure may increase autistic traits combined with developmental coordination disorder.  相似文献   
938.
When cells are exposed to external H(2)O(2), the H(2)O(2) rapidly diffuses inside and oxidizes ferrous iron, thereby forming hydroxyl radicals that damage DNA. Thus the process of oxidative DNA damage requires only H(2)O(2), free iron, and an as-yet unidentified electron donor that reduces ferric iron to the ferrous state. Previous work showed that H(2)O(2) kills Escherichia coli especially rapidly when respiration is inhibited either by cyanide or by genetic defects in respiratory enzymes. In this study we established that these respiratory blocks accelerate the rate of DNA damage. The respiratory blocks did not substantially affect the amounts of intracellular free iron or H(2)O(2), indicating that that they accelerated damage because they increased the availability of the electron donor. The goal of this work was to identify that donor. As expected, the respiratory inhibitors caused a large increase in the amount of intracellular NADH. However, NADH itself was a poor reductant of free iron in vitro. This suggests that in non-respiring cells electrons are transferred from NADH to another carrier that directly reduces the iron. Genetic manipulations of the amounts of intracellular glutathione, NADPH, alpha-ketoacids, ferredoxin, and thioredoxin indicated that none of these was the direct electron donor. However, cells were protected from cyanide-stimulated DNA damage if they lacked flavin reductase, an enzyme that transfers electrons from NADH to free FAD. The K(m) value of this enzyme for NADH is much higher than the usual intracellular NADH concentration, which explains why its flux increased when NADH levels rose during respiratory inhibition. Flavins that were reduced by purified flavin reductase rapidly transferred electrons to free iron and drove a DNA-damaging Fenton system in vitro. Thus the rate of oxidative DNA damage can be limited by the rate at which electron donors reduce free iron, and reduced flavins become the predominant donors in E. coli when respiration is blocked. It remains unclear whether flavins or other reductants drive Fenton chemistry in respiring cells.  相似文献   
939.
Four immunologically distinct subunits were characterized in glutathione (GSH) S-transferases of human liver. Five cationic enzymes (pI 8.9, 8.5, 8.3, 8.2 and 8.0) have an apparently similar subunit composition, and are dimers of 26 500-Mr (A) and 24 500-Mr (B) subunits. A neutral enzyme, pI 6.8, is a dimer of B-type subunits. One of the anionic enzymes, pI 5.5, is also a dimer of 26 500-Mr subunits. However, the 26 500-Mr subunits of this anionic enzyme form are immunologically distinct from the A subunits of the cationic enzymes, and have been designated as A'. Immunoabsorption studies with the neutral enzyme, BB, and the antibodies raised against the cationic enzymes (AB) indicate that A and B subunits are immunologically distinct. Hybridization in vitro of the A and B subunits of the cationic enzymes (AB) results in the expected binary combinations of AA, AB and BB. Studies with the hybridized enzyme forms indicate that only the A subunits express GSH peroxidase activity. A' subunits have maximum affinity for p-nitrobenzyl chloride and p-nitrophenyl acetate, and the B subunits have highest activity towards 1-chloro-2,4-dinitrobenzene. The other anionic form, pI 4.5, present in liver is a heterodimer of 22 500-Mr (C) and B subunits. The C subunits of this enzyme are probably the same as the 22 500-Mr subunits present in human lung and placental GSH transferases. The distinct immunological nature of B and C subunits was also demonstrated by immunoaffinity and subunit-hybridization studies. The results of two-dimensional polyacrylamide-gel-electrophoretic analyses indicate that in human liver GSH transferases, three charge isomers of Mr 26 500 (A type), two charge isomers of Mr 24 500 (B type) and two charge isomers of Mr 22 500 (C type) subunits are present.  相似文献   
940.
Visceral leishmaniasis (also known as kala-azar) is classified as one of the most neglected tropical diseases. It is becoming a growing health problem in Ethiopia, with endemic areas that are continually spreading. The annual burden of visceral leishmaniasis (VL) in Ethiopia is estimated to be between 4,500 and 5,000 cases, and the population at risk is more than 3.2 million. There has been a change in the epidemiology of VL in Ethiopia. Over the last decades, almost all cases and outbreaks of VL were reported from arid and semi-arid parts of the country; however, recent reports indicated the introduction of this disease into the highlands. Migration of labourers to and from endemic areas, climatic and environmental changes, and impaired immunity due to HIV/AIDS and malnutrition resulted in the change of VL epidemiology. HIV spurs the spread of VL by increasing the risk of progression from asymptomatic infection towards full VL. Conversely, VL accelerates the onset of AIDS. In Ethiopia, VL epidemiology remains complex because of the diversity of risk factors involved, and its control is becoming an increasing challenge. This paper reviews the changes in epidemiology of VL in Ethiopia and discusses some of the possible explanations for these changes. The prospects for novel approaches to VL control are discussed, as are the current and future challenges facing Ethiopia''s public health development program.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号