首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1443篇
  免费   97篇
  1540篇
  2023年   5篇
  2022年   18篇
  2021年   33篇
  2020年   24篇
  2019年   20篇
  2018年   32篇
  2017年   21篇
  2016年   34篇
  2015年   69篇
  2014年   78篇
  2013年   103篇
  2012年   133篇
  2011年   119篇
  2010年   86篇
  2009年   74篇
  2008年   92篇
  2007年   101篇
  2006年   97篇
  2005年   86篇
  2004年   92篇
  2003年   76篇
  2002年   59篇
  2001年   10篇
  2000年   7篇
  1999年   8篇
  1998年   17篇
  1997年   14篇
  1996年   3篇
  1995年   5篇
  1994年   5篇
  1993年   4篇
  1992年   7篇
  1991年   2篇
  1990年   5篇
  1982年   1篇
排序方式: 共有1540条查询结果,搜索用时 15 毫秒
21.
The predominant mechanism of drug resistance in African trypanosomes is decreased drug uptake due to loss-of-function mutations in the genes for the transporters that mediate drug import. The role of transporters as determinants of drug susceptibility is well documented from laboratory-selected Trypanosoma brucei mutants. But clinical isolates, especially of T. b. gambiense, are less amenable to experimental investigation since they do not readily grow in culture without prior adaptation. Here we analyze a selected panel of 16 T. brucei ssp. field isolates that (i) have been adapted to axenic in vitro cultivation and (ii) mostly stem from treatment-refractory cases. For each isolate, we quantify the sensitivity to melarsoprol, pentamidine, and diminazene, and sequence the genomic loci of the transporter genes TbAT1 and TbAQP2. The former encodes the well-characterized aminopurine permease P2 which transports several trypanocides including melarsoprol, pentamidine, and diminazene. We find that diminazene-resistant field isolates of T. b. brucei and T. b. rhodesiense carry the same set of point mutations in TbAT1 that was previously described from lab mutants. Aquaglyceroporin 2 has only recently been identified as a second transporter involved in melarsoprol/pentamidine cross-resistance. Here we describe two different kinds of TbAQP2 mutations found in T. b. gambiense field isolates: simple loss of TbAQP2, or loss of wild-type TbAQP2 allele combined with the formation of a novel type of TbAQP2/3 chimera. The identified mutant T. b. gambiense are 40- to 50-fold less sensitive to pentamidine and 3- to 5-times less sensitive to melarsoprol than the reference isolates. We thus demonstrate for the first time that rearrangements of the TbAQP2/TbAQP3 locus accompanied by TbAQP2 gene loss also occur in the field, and that the T. b. gambiense carrying such mutations correlate with a significantly reduced susceptibility to pentamidine and melarsoprol.  相似文献   
22.
In tropical regions, most primary ecosystems have been replaced by mosaic landscapes in which species must cope with a large shift in the distribution of their habitat and associated food resources. Primates are particularly vulnerable to habitat modifications. Most species persist in small fragments surrounded by complex human-mediated matrices whose structure and connectivity may strongly influence their dispersal and feeding behavior. Behavioral plasticity appears to be a crucial parameter governing the ability of organisms to exploit the resources offered by new matrix habitats and thus to persist in fragmented habitats. In this study, we were interested in the dietary plasticity of the golden-crowned sifaka (Propithecus tattersalli), an endangered species of lemur, found only in the Daraina region in north-eastern Madagascar. We used a DNA-based approach combining the barcoding concept and Illumina next-generation sequencing to (i) describe the species diet across its entire range and (ii) evaluate the influence of landscape heterogeneity on diet diversity and composition. Faeces from 96 individuals were sampled across the entire species range and their contents were analyzed using the trnL metabarcoding approach. In parallel, we built a large DNA reference database based on a checklist of the plant species of the Daraina region. Our results suggest that golden-crowned sifakas exhibit remarkable dietary diversity with at least 130 plant species belonging to 80 genera and 49 different families. We highlighted an influence of both habitat type and openness on diet composition suggesting a high flexibility of foraging strategies. Moreover, we observed the presence of numerous cultivated and naturalized plants in the faeces of groups living in forest edge areas. Overall, our findings support our initial expectation that P. tattersalli is able to cope with the current level of alteration of the landscape and confirm our previous results on the distribution and the dispersal ability of this species.  相似文献   
23.
The CoPanFlu-France cohort of households was set up in 2009 to study the risk factors for infection by the pandemic influenza virus (H1N1pdm) in the French general population. The authors developed an integrative data-driven approach to identify individual, collective and environmental factors associated with the post-seasonal serological H1N1pdm geometric mean titer, and derived a nested case-control analysis to identify risk factors for infection during the first season. This analysis included 1377 subjects (601 households). The GMT for the general population was 47.1 (95% confidence interval (CI): 45.1, 49.2). According to a multivariable analysis, pandemic vaccination, seasonal vaccination in 2009, recent history of influenza-like illness, asthma, chronic obstructive pulmonary disease, social contacts at school and use of public transports by the local population were associated with a higher GMT, whereas history of smoking was associated with a lower GMT. Additionally, young age at inclusion and risk perception of exposure to the virus at work were identified as possible risk factors, whereas presence of an air humidifier in the living room was a possible protective factor. These findings will be interpreted in light of the longitudinal analyses of this ongoing cohort.  相似文献   
24.
25.
Coronaviruses represent a large family of enveloped RNA viruses that infect a large spectrum of animals. In humans, the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic and is genetically related to SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV), which caused outbreaks in 2002 and 2012, respectively. All viruses described to date entirely rely on the protein synthesis machinery of the host cells to produce proteins required for their replication and spread. As such, virus often need to control the cellular translational apparatus to avoid the first line of the cellular defense intended to limit the viral propagation. Thus, coronaviruses have developed remarkable strategies to hijack the host translational machinery in order to favor viral protein production. In this review, we will describe some of these strategies and will highlight the role of viral proteins and RNAs in this process.  相似文献   
26.
27.
One of the major early steps of repair is the recruitment of repair proteins at the damage site, and this is coordinated by a cascade of modifications controlled by phosphatidylinositol 3-kinase-related kinases and/or poly (ADP-ribose) polymerase (PARP). We used short interfering DNA molecules mimicking double-strand breaks (called Dbait) or single-strand breaks (called Pbait) to promote DNA-dependent protein kinase (DNA-PK) and PARP activation. Dbait bound and induced both PARP and DNA-PK activities, whereas Pbait acts only on PARP. Therefore, comparative study of the two molecules allows analysis of the respective roles of the two signaling pathways: both recruit proteins involved in single-strand break repair (PARP, XRCC1 and PCNA) and prevent their recruitment at chromosomal damage. Dbait, but not Pbait, also inhibits recruitment of proteins involved in double-strand break repair (53BP1, NBS1, RAD51 and DNA-PK). By these ways, Pbait and Dbait disorganize DNA repair, thereby sensitizing cells to various treatments. Single-strand breaks repair inhibition depends on direct trapping of the main proteins on both molecules. Double-strand breaks repair inhibition may be indirect, resulting from the phosphorylation of double-strand breaks repair proteins and chromatin targets by activated DNA-PK. The DNA repair inhibition by both molecules is confirmed by their synthetic lethality with BRCA mutations.  相似文献   
28.
Nucleo-cytoplasmic large DNA viruses (NCLDVs) constitute a group of eukaryotic viruses that can have crucial ecological roles in the sea by accelerating the turnover of their unicellular hosts or by causing diseases in animals. To better characterize the diversity, abundance and biogeography of marine NCLDVs, we analyzed 17 metagenomes derived from microbial samples (0.2–1.6 μm size range) collected during the Tara Oceans Expedition. The sample set includes ecosystems under-represented in previous studies, such as the Arabian Sea oxygen minimum zone (OMZ) and Indian Ocean lagoons. By combining computationally derived relative abundance and direct prokaryote cell counts, the abundance of NCLDVs was found to be in the order of 104–105 genomes ml−1 for the samples from the photic zone and 102–103 genomes ml−1 for the OMZ. The Megaviridae and Phycodnaviridae dominated the NCLDV populations in the metagenomes, although most of the reads classified in these families showed large divergence from known viral genomes. Our taxon co-occurrence analysis revealed a potential association between viruses of the Megaviridae family and eukaryotes related to oomycetes. In support of this predicted association, we identified six cases of lateral gene transfer between Megaviridae and oomycetes. Our results suggest that marine NCLDVs probably outnumber eukaryotic organisms in the photic layer (per given water mass) and that metagenomic sequence analyses promise to shed new light on the biodiversity of marine viruses and their interactions with potential hosts.  相似文献   
29.
30.
The rapid emergence of new bacterial diseases negatively affects both human health and agricultural productivity. Although the molecular mechanisms underlying these disease emergences are shared between human‐ and plant‐pathogenic bacteria, not much effort has been made to date to understand disease emergences caused by plant‐pathogenic bacteria. In particular, there is a paucity of information in the literature on the role of environmental habitats in which plant‐pathogenic bacteria evolve and on the stress factors to which these microbes are unceasingly exposed. In this microreview, we focus on three molecular mechanisms underlying pathogenicity in bacteria, namely mutations, genomic rearrangements and the acquisition of new DNA sequences through horizontal gene transfer (HGT). We briefly discuss the role of these mechanisms in bacterial disease emergence and elucidate how the environment can influence the occurrence and regulation of these molecular mechanisms by directly impacting disease emergence. The understanding of such molecular evolutionary mechanisms and their environmental drivers will represent an important step towards predicting bacterial disease emergence and developing sustainable management strategies for crops.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号