首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32932篇
  免费   2453篇
  国内免费   3篇
  2023年   222篇
  2022年   340篇
  2021年   805篇
  2020年   610篇
  2019年   813篇
  2018年   1012篇
  2017年   987篇
  2016年   1346篇
  2015年   1686篇
  2014年   1811篇
  2013年   2379篇
  2012年   2680篇
  2011年   2505篇
  2010年   1650篇
  2009年   1367篇
  2008年   1710篇
  2007年   1657篇
  2006年   1577篇
  2005年   1304篇
  2004年   1291篇
  2003年   1174篇
  2002年   1058篇
  2001年   616篇
  2000年   592篇
  1999年   480篇
  1998年   328篇
  1997年   225篇
  1996年   226篇
  1995年   207篇
  1994年   144篇
  1993年   163篇
  1992年   235篇
  1991年   205篇
  1990年   176篇
  1989年   158篇
  1988年   124篇
  1987年   143篇
  1986年   125篇
  1985年   105篇
  1984年   128篇
  1983年   85篇
  1982年   92篇
  1981年   71篇
  1980年   63篇
  1979年   66篇
  1978年   52篇
  1974年   63篇
  1973年   45篇
  1970年   43篇
  1969年   44篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
62.
Preincubation of resting cells of Saccharomyces cerevisiae double mutant can1 gap1 (with a single transport system for L-lysine) with metabolic substrates stimulated subsequent uptake of lysine. While in the wild type the stimulation is connected primarily with carrier protein synthesis (delayed, cycloheximide-inhibitable effect) in the mutant an immediate tapping of an energy source (antimycin-inhibited) is practically solely involved.  相似文献   
63.
64.
65.
A bioactivity-guided chemical study of Iostephane heterophylla (Asteraceae) led to the isolation of xanthorrhizol (1) as the compound that causes inhibition of ATP synthesis, H+-uptake and electron flow from water to methylviologen (basal, phosphorylating and uncoupled) in freshly lysed spinach chloroplasts, thus acting as an inhibitor of the Hill reaction. Acetyl (2), dihydro (3) and acetyl-dihydro (4) derivatives were synthesized. It was found that 4 was less active than 1 and 2 in ATP synthesis, whereas 3 was the most potent inhibitor of the Hill reaction and was also an inhibitor of H+-ATPase. Studies of the photosynthetic partial redox reactions from PQ to MV indicated that 1 partially inhibited the PQ pool, but that 3 did not. However, both inhibited the uncoupled electron transport in PSII from water to DCBQ. Uncoupled electron flow from water to silicomolybdate was completely inhibited by 3 and partially by 1. The reaction from DPC to DCPIP was inhibited by both 1 and 3. These results indicate that the inhibition site is located within PSII for 1 and 3 as was corroborated by fluorescence decay data.  相似文献   
66.
Aim The seagrass, Posidonia oceanica is a clonal angiosperm endemic to the Mediterranean Sea. Previous studies have suggested that clonal growth is far greater than sexual recruitment and thus leads to low clonal diversity within meadows. However, recently developed microsatellite markers indicate that there are many different genotypes, and therefore many distinct clones present. The low resolution of markers used in the past limited our ability to estimate clonality and assess the individual level. New high‐resolution dinucleotide microsatellites now allow genetically distinct individuals to be identified, enabling more reliable estimation of population genetic parameters across the Mediterranean Basin. We investigated the biogeography and dispersal of P. oceanica at various spatial scales in order to assess the influence of different evolutionary factors shaping the distribution of genetic diversity in this species. Location The Mediterranean. Methods We used seven hypervariable microsatellite markers, in addition to the five previously existing markers, to describe the spatial distribution of genetic variability in 34 meadows spread throughout the Mediterranean, on the basis of an average of 35.6 (± 6.3) ramets sampled. Results At the scale of the Mediterranean Sea as a whole, a strong east–west cleavage was detected (amova) . These results are in line with those obtained using previous markers. The new results showed the presence of a putative secondary contact zone at the Siculo‐Tunisian Strait, which exhibited high allelic richness and shared alleles absent from the eastern and western basins. F statistics (pairwise θ ranges between 0.09 and 0.71) revealed high genetic structure between meadows, both at a small scale (about 2 to 200 km) and at a medium scale within the eastern and western basins, independent of geographical distance. At the intrameadow scale, significant spatial autocorrelation in six out of 15 locations revealed that dispersal can be restricted to the scale of a few metres. Main conclusions A stochastic pattern of effective migration due to low population size, turnover and seed survival is the most likely explanation for this pattern of highly restricted gene flow, despite the importance of an a priori seed dispersal potential. The east–west cleavage probably represents the outline of vicariance caused by the last Pleistocene ice age and maintained to this day by low gene flow. These results emphasize the diversity of evolutionary processes shaping the genetic structure at different spatial scales.  相似文献   
67.
Toxic peptides II-9.2.2 and II-10, purified from Centruroides noxius venom, bear highly homologous N-terminal amino acid sequences, and both toxins are lethal to mice. However, only toxin II-10 is active on the voltage-clamped squid axon, selectively decreasing the voltage-dependent Na+ current. Here, we have tested toxins II-9 and II-10 on synaptosomes from mouse brain: both toxins increased the release of gamma-[3H]aminobutyric acid ([3H]GABA). Their effect was completely blocked by tetrodotoxin or by the absence of external Na+. Also, both toxins increased Na+ permeability in isolated nerve terminals. Besides the observation that toxin II-9 is active on synaptosomes, the effect of toxin II-10 in this preparation is opposite to that observed in the squid axon. Thus, our results reflect functional differences between the populations of Na+ channels in mouse brain synaptosomes and in the squid axon. The release of GABA evoked by these toxins from synaptosomes required external Ca2+ and was blocked by Ca2+ channel blockers (verapamil and Co2+). This latter observation is in sharp contrast to the releasing action of veratrine, which evoked release even in the absence of external Ca2+. Furthermore, the action of both C. noxius toxins was potentiated by veratrine, a result suggesting they have different mechanisms of action. Among drugs that release neurotransmitters by increasing Na+ permeability, it is noteworthy that scorpion toxins are the only ones yet reported to have a strict requirement for external Ca2+.  相似文献   
68.
Summary The maximum density achievable by aquatic organisms is an inverse linear function of their body size. As a consequence, the maximum achievable biomass is independent of body size, and is 2 orders of magnitude higher than the biomass in natural populations. The minimum interorganismic terorganismic distance, calculated from the maximum density to allow comparison between aquatic and terrestrial organisms, scales as the 1/3 power of body size in both habitats. The similarities in the interorganismic distance of terrestrial and aquatic plant and animal communities suggest a fundamental regularity in the way organisms use the space.  相似文献   
69.
70.
Rat brain cortical neurons originate from germinal cells during a period of 6 days immediately before birth. Upon leaving the proliferative layer neurons become irreversibly quiescent. We have previously reported the presence of core histone nonallelic variants in terminally differentiated rat brain cortical neurons. Although the functional significance of core histone variants is unknown, several lines of evidence suggest that the processes of variant replacement could be involved in the structural and functional differentiation of chromatin. Here we describe the changes in core histone composition that occur during postnatal development. The changes in chromatin composition are already apparent at birth, suggesting that the change in synthesis patterns is related to the arrest of cell proliferation and neuron commitment. During postnatal development H2A.2, H2A.x, and H3.3 accumulate, whereas H2A.1, H3.1, and H3.2 decrease. H2A.z is the only variant that remains constant. The time courses of replacement and the observed variant proportions when the variant composition approaches the equilibrium suggest that all H2A variants are synthesized either in germinal cells or in neurons, whereas H3.1 and H3.2 seem to be synthesized only in germinal cells. The extent of the replacement of H3.1 and H3.2 by H3.3 shows that the exchange process affects most of the chromatin. The half-life times of H2A.1 and H3.2 were calculated from their respective exponential decays. Values of 65 days or less and 142 days were found for H2A.1 and H3.2, respectively. The preferential replacement of H2A.1 over H3.2 reinforces the view that the histone core does not degrade as a single unit.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号